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The construction of nanoporous membranes is of great
technological importance for various applications, including
catalyst supports, filters for biomolecule purification,
environmental remediation and seawater desalination1–3. A
major challenge is the scalable fabrication of membranes with
the desirable combination of good thermal stability, high
selectivity and excellent recyclability. Here we present a self-
assembly method for constructing thermally stable, free-
standing nanowire membranes that exhibit controlled
wetting behaviour ranging from superhydrophilic to
superhydrophobic. These membranes can selectively absorb
oils up to 20 times the material’s weight in preference to water,
through a combination of superhydrophobicity and capillary
action. Moreover, the nanowires that form the membrane
structure can be re-suspended in solutions and subsequently
re-form the original paper-like morphology over many cycles.
Our results suggest an innovative material that should find
practical applications in the removal of organics, particularly
in the field of oil spill cleanup.

Owing to the increasing level of attention focused on the
preservation of the environment, there is a growing need for
membrane materials able to perform complex functions such as
removing various forms of organic contaminants or oil spills
from water4. The existing toolbox for the fabrication of
membranes includes methods such as selective etching of solid or
polymer templates, self-assembly of block co-polymers, layer-by-
layer assembly, electrospinning of nanofibres, dry-state spinning
of nanotube yarns, and replica moulding against porous
templates5–10. Although widely implemented in research, these
methods have limitations for practical use because of the need to
withstand harsh conditions, the need for multistep procedures
for implementation or limitations in substrate size. In addition,
conventional polymeric membranes are unsuitable for high-
temperature applications and lack substantial selectivity. New and
recyclable membranes that overcome these fundamental
limitations could significantly reduce materials waste and
operating costs. Here, we present a thermally stable membrane
material, based upon self-assembled, free-standing, paper-like
structures of cryptomelane-type manganese oxide nanowires. The

nanowire membrane, composed of three-dimensional porous
nanostructures, exhibits a superhydrophilic character with a
wetting time of 0.05 s. When coated with a thin layer of
hydrophobic molecules, the membrane becomes
superhydrophobic, as is made evident by its high water contact
angle (u . 1708). These two extreme wetting characteristics are
completely switchable upon coating with or removal of the
hydrophobic molecules at elevated temperatures. We demonstrate
the efficient absorption and high level of selectivity of this
superwetting nanowire membrane for a broad range of organic
solvents and oil.

The design of suitable membranes for selective absorption of
organics requires a material composed of superhydrophobic or
oleophilic fibres that form a net of open superwetting capillaries.
When combined with capillary action, for example in the case of
non-woven poly(propylene) fibres, absorption efficiency is
significantly improved11. Surface energy, and consequently
contact angle, is a materials property that depends critically on
surface morphology12,13. Surface roughness and the fraction of air
trapped on a surface, as well as material composition, determine
the wetting property of the surface14–25. To this end we
synthesized a material composed of manganese oxide nanowires
that assemble into free-standing membranes according to a
modified procedure available in the literature26.

In a typical experiment, nanowires were first synthesized at
250 8C in an autoclave in the presence of stoichiometric mixtures
of potassium sulphate (19.1 mmol), potassium persulphate and
manganese sulphate monohydrate in a ratio of 1:2:1 in 80 ml of
deionized water. This hydrothermal treatment yielded a wool-like
suspension after dispersion in deionized water. The water was
subsequently removed by casting the suspension on a Teflonw

substrate placed in an oven, leading to the formation of self-
assembled nanowire membranes. Free-standing nanowire
membranes of arbitrary size exhibiting a uniform surface
morphology could be readily synthesized with this approach in
almost quantitative yield. A typical sample of the nanowire paper
with a 27-cm edge length is shown in Fig. 1a. A scanning
electron microscopy (SEM) image (Fig. 1b) shows a cross-
sectional view of the nanowire membrane (�50 mm thick)
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Figure 2 Characterization of the silicone-coated nanowire membrane. a, Water contact angle measurements of the silicone-coated cryptomelane membrane.

Note that uA and uR refer to advancing and receding angles, respectively. b, SEM image of the silicone-coated nanowires. c, TEM image of as-modified nanowires.

Inset: the corresponding SAED pattern. d, High-magnification TEM image showing a conformal sheath on the surface of the nanowire. e, EDS spectrum taken from a

selected area marked in d.
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Figure 1 Characterization of the as-synthesized nanowire membrane. a, Optical image of the cryptomelane membrane. b, SEM image of cross-sectional area of

the membrane, showing a layered structure. c, Low-magnification SEM image showing surface morphology of the membrane. d, SEM image of the interpenetrating

nanowire networks. e, High-magnification SEM image of a nanowire bundle. f, TEM image of a single cryptomelane nanowire. g, High-magnification TEM image of

the nanowire shown in f. Inset: the corresponding selected-area electron pattern. h, Wetting time values as a function of the number of water droplets sequentially

deposited at time intervals of 60 s and 120 s, respectively. Inset: video snapshots of the wetting of a water droplet on the membrane.
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consisting of nanowires assembled over multiple length scales. A
large portion of the nanowires assemble in bundles over a length
scale longer than several hundreds of micrometres, forming an
open porous network (Fig. 1c–e). Figure 1f shows a transmission
electron microscopy (TEM) image of a single nanowire with a
uniform diameter (�19 nm). Selected-area electron diffraction
(SAED) patterns (upper right inset, Fig. 1g) of the nanowire can
be indexed in accordance with the [100] zone axis of a
cryptomelane-M type (K22xMn8O16) crystal (Joint Committee
on Powder Diffraction Standards file no. 44-1386: a ¼ 9.942 Å,
b ¼ 2.866 Å, c ¼ 9.709 Å). The high-magnification TEM image of
the nanowire shown in Fig. 1 g reveals lattice fringes of the f002g
and f011g with a d-spacing of 0.48 nm and 0.27 nm, respectively,
typical for monoclinic K22xMn8O16. Within this nanowire, the
[001] crystallographic direction is essentially parallel to the long
axis direction of the nanowire.

The self-assembled cryptomelane nanowire membrane has a
pore size distribution centred at 10 nm and a surface area of
44 m2 g21. To examine the wettability of the membrane, a video
contact angle instrument was used and operated in dynamic mode
at a capture speed of 60 frames per second (inset, Fig. 1h). The
wetting time for a water droplet (�2 ml) added to the surface was
found to be 0.05 s. Interestingly, further additions of water droplets
to the same location at time intervals of 60 s and 120 s show a
constant wetting time of 0.05 s until a saturation point is reached
(Fig. 1h), indicating that water penetrates in the bulk of the material.

To obtain superhydrophobic surfaces, we coated the membrane
using a vapour deposition technique that provides a coating over
the entire surface of the porous material. The nanowire
membrane was placed together with a polydimethysiloxane
(PDMS) film in a covered glass container and heated at 234 8C
for 30 min. Upon heat treatment, we suspect that volatile silicone
molecules in the form of short PDMS chains form a conformal
layer on the metal oxide substrate and subsequently crosslink, to
result in the formation of a silicone coating. As anticipated, the
modified membrane becomes superhydrophobic, as is made
evident by its water contact angle of 172+18 (Fig. 2a) with a
negligible hysteresis between the advancing and receding angle.
Notably, the superhydrophobicity of the silicone-coated
membrane remains unaltered after being immersed in water at
ambient temperature for more than three months. The silicone-
coated nanowires maintain their typical morphology (Fig. 2b),
remain single crystalline (Fig. 2c), and are conformally coated
with a sheath (�3 nm thick, Fig. 2d). Compositional analysis of

the sheath by energy-dispersive X-ray spectroscopy (EDS) reveals
the presence of silicon (Fig. 2e). Etching of the inorganic
nanowires leaves silicone ‘nanotubes’ that are mostly composed
of silicon and oxygen (see Supplementary Information, Fig. S1).
Fourier transform infrared (FTIR) spectroscopy on a potassium
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Figure 4 Oil uptake studies of the silicone-coated nanowire membrane.

a, Absorption capacities of the membrane for a selection of organic solvents and

oils in terms of its weight gain. b,c, A layer of gasoline can be removed by

addition of the self-supporting membrane to the gasoline followed by the

removal of the paper. The gasoline was labelled with Oil Blue 35 dye for

clear presentation.
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Figure 3 Surface wetting switchability of the nanowire membrane. a, Representation of the reversible transition between superhydrophilic (top) and

superhydrophobic (bottom) states of the nanowire membrane. b, A series of contact angle and hysteresis measurements taken after each transition cycle.
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bromide pellet coated with the silicone by the same procedure as
for the nanowires shows the presence of short chains of PDMS
(see Supplementary Information, Fig. S10). Importantly, this
hydrophobic coating can be easily removed by heating the
nanowire membrane to elevated temperatures (390 8C), resulting
in switchable wetting behaviour between its superhydrophilic and
superhydrophobic states (Fig. 3a). Only subtle changes in water
contact angles and hysteresis were observed in each switching
cycle (eight times for the study shown in Fig. 3b), indicating a
high degree of switchability in the wetting behaviour. The free-
standing silicone-coated nanowire membrane exhibits a
considerable degree of mechanical robustness, as is shown by its
resistance to repeated ultrasonic treatment. Control experiments
on manganese oxide nanoparticle films exposed to the same
silicone coating treatment produced a surface with a contact
angle of 1418, confirming that the coating itself is not the sole
cause of the superhydrophobic behaviour (see Supplementary
Information, Fig. S2). Furthermore, by ion exchange of Kþ with
NH4

þ and heating the membrane at 600 8C in a furnace for 2 h,
we induced a transformation into bixbyite-type manganese oxide
with a further nanostructuring of the surface features while
keeping the self-standing structure intact (see Supplementary
Information, Fig. S3). A conformal silicone coating of this
structure could also be obtained, as proven by high-resolution
TEM imaging and by a water contact angle of 1778.

As expected, the membrane combined its superwetting
behaviour (that is, superhydrophobicity) with good capillary
action, an overall property that we call selective superabsorbance.
When brought into contact with a layer of oil on a water surface,
the membrane, with a calculated density of 0.286 g cm23 (in
contrast to 4.36 g cm23 in bulk cryptomelane mineral), quickly
absorbed the oil while repelling the water (see Supplementary
Information, Movie M1). As shown in Fig. 4, the membrane
(1.5 � 3 cm) showed uptake capacities up to 20 times its weight
for a collection of organic solvents and oil. Specifically, the
membrane absorbs on average 14 t m23 of motor oil, making
this membrane an ideal candidate as an oil absorbent. As control
experiments, using 1H NMR, we compared the solvent selectivity
of the membrane (see Supplementary Information, Fig. S11) with
that of porous polypropylene and silicone-coated glass fabric
membranes with water contact angles of 142 and 1288,
respectively (see Supplementary Information, Fig. S4). The
polypropylene and glass fabric membranes were found to absorb

both water and toluene, whereas only toluene was absorbed by
the superhydrophobic nanowire membrane, confirming the
important role of the superwetting surfaces for selective
absorption. More importantly, the membrane can selectively
absorb emulsified oil suspensions in water with a remarkable
uptake capacity of �9 t m23 (see Supplementary Information,
Fig. S5). As confirmed by dynamic light scattering studies, the
nanowire membrane readily takes up toluene droplets of different
sizes, but the glass fabric counterpart does not show any notable
selectivity of the toluene droplets over water (see Supplementary
Information, Fig. S6). Another major advantage of the
nanowire membrane is its thermal stability for temperatures up
to 380 8C. The membrane can be regenerated after each use by
ultrasonic washing and autoclaving (�130 8C for 20 min),
making recycling schemes for both the membrane and the
absorbed liquid possible.

An intriguing property of the superwetting membrane is the
possibility of separating one solvent from a mixture of solvents of
very similar polarity. By eluting the solvents against the
membrane by means of a technique similar to thin layer
chromatography, the subtle adhesion difference between the
solvent and the membrane in these two systems can be amplified
through capillary force and enormous surface areas in the
membrane. As a result, the elution method leads to an increased
variation in the ratio of the solvents absorbed as the solvent
mixture rises from the bottom to the top of the material. As a
proof-of-concept experiment, a superhydrophobic membrane was
placed into a 1:1 (v:v) mixture of toluene and benzene (Fig. 5a).
Despite very similar dielectric constant values for toluene (2.4)
and benzene (2.3), we were able to retrieve a solvent ratio of 12:1
(v:v) at 3 cm above the solvent level 3 min after the immersion of
the membrane (Fig. 5b). A more immediate application for these
membrane materials will be in the removal of hydrophobic
contaminants from water (for example, sea water or industrial
discharge). Given the global scale of severe water pollution
arising from oil spills and industrial organic pollutants, this study
may prove particularly useful in the design of recyclable
absorbents with significant environmental impact.

METHODS

MATERIALS

Potassium sulphate, potassium persulphate and manganese sulphate
monohydrate were used as received. A sample of motor oil was purchased from

1

2

3

4

5

54321

1

2

3
4
5

Cut

Analyse

CDCl3

0

2

4

6

8

10

12

5 10 15 20 25 30

Height (mm)

To
lu

en
e:

be
nz

en
e 

ra
tio

 (v
:v

)

1 2
3

4

5

Figure 5 Solvent-separation studies. a, Schematic showing a typical procedure for separation of mixed solvents of very similar hydrophobicity. A piece of

superhydrophobic nanowire membrane was immersed in a mixture of toluene and benzene for 3 min, the membrane was then removed from the solvent, cut into

equally sized pieces, and subsequently placed into separated vials containing deuterated solvents. b, Calculated molar ratios of the solvents absorbed on five pieces

cut from the nanowire membrane according to the scheme shown in a.
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Citgo. For all experiments, deionized water (Milli-Q) was used. Muscovite mica
(V-1 grade) substrates were purchased from Structure Probe. Silicon oxide
wafers were cut into 0.5 � 0.5 cm2 slides and sonicated sequentially in
dichloromethane, methanol and deionized water for 10 min. The wafers
were then immersed in a freshly mixed ammonia peroxide solution
(H2O:H2O2:NH3

.H2O(v:v:v)¼ 5:1:1) for 1 h at �90 8C, after which they were
rinsed with deionized water followed by ethanol.

SYNTHESIS

The precursor to cryptomelane nanowire membranes was synthesized using a
hydrothermal method. The starting materials were composed of 19.1 mmol of
potassium sulphate (K2SO4), potassium persulphate (K2S2O8) and manganese
sulphate monohydrate (MnSO4

.H2O) in a ratio of 1:2:1 in 80 ml of deionized
(DI) water. The mixture was transferred to a Teflon vessel held in a stainless steel
vessel. The sealed vessel was placed in an oven and heated at 250 8C for 4 days.
The resulting solid was then resuspended in 800 ml of deionized water and
stirred vigorously overnight to yield a homogeneous suspension. The suspension
was filtered and washed a couple of times until all soluble impurities were
removed from the solid. The nanowire membrane was produced by dispersing
the precursor, casting the suspension on a Teflon substrate placed in an oven, and
subsequently heating at 85 8C for 24 h.

The bixbyite nanowires were synthesized according to the following
procedure. The cryptomelane-type nanowires were first placed in a solution of
NH4Cl, resulting in ion exchange of Kþ within the crystalline tunnel of the
nanowires with NH4

þ cations. Heating of the NH4
þ-doped nanowires at 600 8C

leads to the oxidation NH4
þ and subsequent conversion to N2 gas. The oxidation

process was confirmed by a temperature-programmed desorption method.

SILICONE COATING PROCEDURE

The silicone coatings of the substrates were achieved using a vapour deposition
technique. In a typical experiment, a PDMS stamp and the nanowire membrane
were placed in a sealed glass container heated at 234 8C for 30 min. The thermal
degradation of PDMS through heterolytic cleavage of the Si–O bonds leads to a
mixture of volatile, low-molecular-weight products that form a conformal layer
on the surface of the substrates. The coated nanowire membrane exhibited a
water contact angle of more than 1708 throughout both sides of the membrane,
which is indicative of full surface coverage.

CHARACTERIZATION

The crystallographic phase of the bixbyite nanowires was determined by powder
XRD (Rigaku RU300, CuKa radiation). TEM images were recorded on a field-
emission JEM-3000F high-resolution transmission electron microscope operated
at 300 kV and equipped with an energy-dispersive X-ray spectrometer. Surface
morphology of the nanowire membrane was observed using a JEOL-5910
scanning electron microscope. Sessile drop contact angle measurements were
performed by adding water to the sample surface with a motor-driven syringe.
Unless otherwise noted, all contact angle measurements were carried out under
ambient laboratory conditions at temperature of �20 8C. The advancing (uA)
and receding (uR) angles were obtained by extending and contracting the volume
of the drop, respectively. The surface area for the cryptomelane nanowire
membrane was measured by a three-point BET method (nitrogen gas as
absorbate). Nitrogen desorption and adsorption studies using Quantachrome
Corp Autosorb-1 equipment were used to determine the pore size distribution.

The separation of toluene from benzene was performed by using a
6 � 40 mm hydrophobic membrane soaked into a 1:1 (v:v) mixture of toluene
and benzene (molar ratio of toluene/benzene: 0.84) for 3 min. The nanowire
membrane was then removed from the solvent mixture and subsequently cut
into six pieces, as shown in Fig. 5. The first five pieces were immediately placed
into five individual vials containing deuterated chloroform. Molar ratios of the
solvents absorbed on these five pieces were determined by 1H NMR analysis
(Bruker DPX 400). The integrated areas of 1H NMR resonance signals at

2.36 p.p.m. for toluene (C6H5CH3) and 7.36 p.p.m. for benzene (C6H6) were
used to calculate the molar ratio.
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