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We report the synthesis of a series of monodispersed Bi-doped PbTe nanocrystals with tunable

morphologies by using a doping precursor of bismuth(III) 2-ethylhexanoate. The as-synthesized

Pb1�xBixTe (x ¼ 0.005, 0.010, 0.015, 0.020) nanocrystals are characterized by X-ray diffraction, X-ray

photoelectron spectroscopy and Hall measurements. The nanocrystals with controlled spherical,

cuboctahedral, and cubic shapes were readily prepared by varying the Bi doping concentration.

Thermoelectric investigation of these nanocrystals shows that the Bi3+ doping increases electrical

conductivity from 350 to 650 K and changes the Seebeck coefficient sign from positive to negative.
Introduction

Thermoelectric (TE) materials can directly convert thermal

energy into electrical energy upon applying a thermal gradient to

the materials. These materials are playing an increasingly

important part in a diverse range of applications as heat pumps

and electrical power generators.1–4 The efficiency of TE materials

can be measured by the material’s dimensionless figure of merit

ZT (ZT ¼ a2sT/k, where a is the Seebeck coefficient or

thermopower, T is the absolute temperature, and s and k are the

electrical conductivity and thermal conductivity). The thermal

conductivity comprises contribution from electrons and

phonons.5

Maximizing ZT is often achieved by minimizing the thermal

conductivity by promoting interface-phonon scattering. It has

been proposed that nanostructured materials can enhance ZT

due to the occurrence of the quantum confinement effect, which

increases thermopower a resulting from an increased local

density of states near the Fermi level.6–8 Despite recent devel-

opment in nanocrystal synthesis,9–17 it has been challenging to

prepare small-sized thermoelectric nanocrystals with controlled

doping composition and concentration.18–20 For instance,

although bismuth (Bi) has been used as an n-type dopant in PbTe

thin films and bulk materials for thermoelectric studies,21,22 the

preparation of well-defined Bi-doped PbTe nanoparticles with

controlled doping levels remains a substantial challenge.
aDepartment of Chemistry, National University of Singapore, Singapore,
117543. E-mail: chmlx@nus.edu.sg; Fax: +65-65161791
bDepartment of Materials Science and Engineering, Nanyang
Technological University, Singapore, 639798
cDepartment of Applied Physics, The Hong Kong Polytechnic University,
Kowloon, Hong Kong SAR, China
dDepartment of Mechanical and Aerospace Engineering, West Virginia
University, Morganton, USA 26506
eDepartment of Electrical and Computer Engineering, National University
of Singapore, Singapore, 117543
fOptical Materials and Systems Division, Data Storage Institute,
A*STAR, Singapore, 117608

1256 | Nanoscale, 2010, 2, 1256–1259
In this study, we show that it is plausible to synthesize mon-

odispersed Bi-doped PbTe nanocrystals with controlled sizes and

morphologies by utilizing bismuth(III) 2-ethylhexanoate as the Bi

precursor. Importantly, we show that the Bi doping results in

electrical conductivity enhancement in the PbTe nanocrystals,

providing promising uses for thermoelectric applications.

Experimental

In a typical synthesis, 1 mmol of lead acetate trihydrate (> 99%)

and stoichiometric amounts of bismuth(III) 2-ethylhexanoate

were dissolved in 5 ml of 1-octadecene and 1 ml of oleic acid

(both technical grade, 90%) in a 50 ml flask. The resulting

mixture was heated at 90 �C under stirring for three hours to

form a light yellow solution. A stock solution (0.75 M) of tellu-

rium was separately prepared by adding the tellurium powder

(99.8%) into trioctylphosphine ($ 97%) with vigorous stirring

overnight. Subsequently, a 4 ml tellurium stock solution was

quickly injected into the solution of lead acetate at a temperature

of 150 �C. After two minutes, the flask was cooled in an ice bath

to precipitate the nanocrystals. The as-formed nanocrystals were

washed with absolute ethanol several times, further precipitated

by centrifugation, and re-dispersed with cyclohexane. All

syntheses were performed in an argon atmosphere using

a Schlenk line.

X-Ray power diffraction (XRD) analysis was carried out on

a Siemens D5005 X-ray diffractometer with Cu Ka radiation

(l ¼ 1.5406 �A). The particle morphology and selected area

electron diffraction (SAED) were examined by transmission

electron microscopy (TEM, JEOL 2010) operating at an accel-

eration voltage of 200 kV. X-Ray photoelectron spectra (XPS)

were performed with a PHI 5000 Versa Probe system (Physical

Electronics, MN) using a monochromatic Al Ka X-ray source

(1486.6 eV). The pass energy of the hemisphere analyzer was

maintained at 117.4 eV for survey scan and 58.7 eV for high-

resolution scan, while the takeoff angle was fixed at 45�. Binding

energies of XPS spectra were corrected by referencing the

C1s signal of adventitious hydrocarbon to 284.8 eV. XPS data

fittings were carried out with PHI multipakTM software using the
This journal is ª The Royal Society of Chemistry 2010
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Gauss-Lorenz mode and Shirley background. For preparation of

nanoparticle films, the as-synthesized nanoparticles were washed

with N2H4$H2O and ethanol (v/v; 1 : 4) to remove capping

surfactants and re-dispersed in ethanol prior to spray-coating

onto a glass substrate and subsequently annealing under H2/Ar

at 350 �C for 30 min. The electrical properties of the films were

measured by a ZEM-3 Seebeck meter from 350 to 650 K. The

thickness of the film was obtained by using a surface profile

scanning system (a-step IQ). The surface morphology of the films

was investigated by field-emission scanning electron microcopy

(SEM, JEOL6710). The Hall measurements were conducted on a

Lake Shore 7600 Hall measurement system from 300 K to 100 K.
Results and discussion

The crystal structures of the as-synthesized Bi-doped PbTe

(Pb1�xBixTe; x ¼ 0, 0.005, 0.010, 0.015 and 0.020) samples were

first examined by XRD and the results are shown in Fig. 1. All

diffraction peaks can be indexed to face-centered cubic (fcc)

rock-salt structures with a space group of Fm3m (JCPDS: 78-

1904). The slight peak shifts towards higher diffraction angles in

the X-ray powder diffraction patterns as a function of the Bi3+

ion concentration, can be attributed to the contraction in unit-

cell volume due to the substitution of Pb2+ ions by smaller Bi3+

ions in the host lattice. The lattice parameter was found to

decrease with an increase in the dopant concentration (Fig. 1,

inset). The solubility limit of bismuth in PbTe was estimated to

be x ¼ 0.015.

It has been reported that lead chalcogenide nanoparticles with

controlled feature size and morphology can be obtained by

varying the reaction time, surfactant concentration, and ratio of

metal precursors.23,24 We found that the doping of Bi3+ at

different doping levels through use of bismuth(III) 2-ethyl-

hexanoate as the doping precursor resulted in the formation of

PbTe nanoparticles with tunable particle size (10–15 nm) and

morphology. To exclude the possibility of reaction time effect on

the nanocrystal growth, all the reactions were carried out for two

minutes and immediately quenched by pouring the reaction
Fig. 1 XRD patterns of the as-synthesized Pb1�xBixTe (x ¼ 0, 0.005,

0.010, 0.015 and 0.020) samples (inset: the lattice parameter of the

samples as a function of Bi3+ doping concentration x).
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mixtures into an ice bath. The effect of Bi3+ doping on the

morphology of the nanocrystals was presented in Fig. 2. With no

Bi3+ added, monodispersed spherical PbTe nanoparticles were

obtained with an average particle size of 10 nm.25 On doping of

Bi3+ with increased concentrations (x ¼ 0.005, 0.010, 0.015), the

nanocrystal morphology changes from spherical shape to

cuboctahedral and cubic shapes. Notably, the doping of Bi3+ also

leads to an increase in the nanocrystal size.

The shape evolution of the PbTe nanocrystals as a function of

Bi3+ dopant can be attributed to the relative growth rates on

different crystallographic planes.26,27 In the rock-salt crystal

structure, the {111} plane generally has a higher surface energy

than the {100} plane.23 On increasing reaction time, the {111}

facets grow faster than the {100} facets, resulting in the forma-

tion of cubic-shaped nanocrystals dominated with {100} planes.

For example, it was reported that the spherical/cuboctahedral-

to-cubic shape conversion for pure PbTe nanocrystals requires

more than 20 min of reaction time.24 In contrast, our doping

approach results in the shape conversion within 2 min. The effect

on shortening the reaction time can be ascribed to the addition of

2-ethylhexanoate, which stabilizes the {100} facets and promotes

the relative growth rate of the {111} facets.
Fig. 2 (a), (c), (e) and (g) Corresponding TEM images of the as-

synthesized Pb1�xBixTe nanocrystals at x ¼ 0, 0.005, 0.010 and 0.015,

respectively. (b) SAED pattern obtained for samples shown in Fig. 2(a),

indicating cubic PbTe structures. (d), (f) and (h) Corresponding HRTEM

images of the nanocrystals shown in (c), (e) and (g), respectively.

The scale bars are 50 nm for (a), (c), (e) and (g) and are 5 nm for (d), (f)

and (h).
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Fig. 3 (a) XPS survey scan of the as-synthesized Pb0.99Bi0.01Te nano-

particles. (b)–(f) High-resolution XPS spectra of respective Pb4f, Te3d,

Bi4f, O1s and C1s regions of the Pb0.99Bi0.01Te nanoparticles.
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To verify the crystal composition and the presence of stabi-

lizing molecules bound to the crystal surface, the PbTe nano-

crystals doped with 1 mol% Bi3+ were examined by XPS as shown

in Fig. 3. Fig. 3(a) shows the XPS spectrum that provides
Fig. 4 (a) A representative SEM image of the film made from Bi-doped PbTe

the film shown in Fig. 4(a) and the scale bar is 100 nm. (b) Temperature

Pb1�xBixTe (x ¼ 0, 0.005, 0.010, 0.015, 0.020) nanoparticles. Inset is an enl

Corresponding Seebeck coefficient measurements obtained from the films m

measurement of the film made from undoped PbTe nanoparticles). (d) Corresp

Bi-doped and undoped PbTe nanoparticles.

1258 | Nanoscale, 2010, 2, 1256–1259
a survey scan of the nanocrystals. All peaks can be assigned to

Pb, Te, Bi, O and C. The Pb4f7/2 and Pb4f5/2 peaks were observed

at 137.2 and 142.3 eV respectively, which were the characteristic

values for PbTe (Fig. 3(b)). The high-binding-energy shoulder

peaks at 138.4 and 143.2 eV correspond to the expected chemical

shifts for either Pb(OH)2 or PbO (Fig. 3(b)).28 The Te3d5/2 and

Te3d3/2 peaks were observed at 571.9 and 582.3 eV, which were

diagnostic of PbTe (Fig. 3(c)). Two groups of peaks at 575.8 and

586.2 eV were assigned to TeO2 (Fig. 3(c)).28 The two sub-bands

of Bi4f at 158 (Bi4f5/2) and 163.4 eV (Bi4f7/2) further confirm the

presence of Bi3+ dopant in PbTe nanocrystals.29 The high-

binding-energy shoulder peaks at 159 and 164.4 eV were assigned

to Bi2O3 (Fig. 3(d)). The C1s and O1s peaks at 284.8 and 530 eV

were attributed to oleic acid or 2-ethylhexanoate molecules

bound to the particle surface (Fig. 3(e) and (f)).

To evaluate the TE application of the Bi-doped nanoparticles,

the nanoparticle thin films doped with varied amounts of Bi were

prepared by an air brush spray system. The hydrazine treatment

was employed to remove the organic ligands for increased elec-

trical contact of the nanoparticle systems.30 The surface

morphology of an as-prepared film after annealing at 350 �C is

shown in Fig. 4(a). Upon annealing, the nanoparticles were

enlarged to 20–30 nm. The quantum confinement effect is

expected as the average size of the enlarged nanoparticles is still

smaller than the Bohr exciton radius (�46 nm) of PbTe.31 The

electrical resistance and the Seebeck coefficient of the samples

were measured from 350 to 650 K and plotted as a function of

temperature in Fig. 4(b) and (c), respectively. In contrast to the

PbTe nanoparticle film without the Bi3+ dopant, the films made
nanoparticles. The scale bar is 1 mm. Inset is a high magnification SEM of

dependence studies of the electrical resistance for the films made from

arged area of electrical resistance measured between 450 and 650 K. (c)

ade from Bi-doped PbTe nanoparticles (inset: the Seebeck coefficient

onding Hall coefficient measurements obtained from the films made from
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Fig. 5 mH (left panel) and logmH (right panel) as a function of logT for

the Pb0.99Bi0.01Te nanoparticle film.
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from Bi-doped PbTe nanocrystals showed marked decreases of

electrical resistance (Fig. 4(b)) and negative Seebeck coefficients

(Fig. 4(c)). The negative Seebeck coefficients, which are

consistent with the results obtained by the Hall measurements

shown in Fig. 4(d), provide another proof of the successful

doping of the Bi3+ into the PbTe nanocrystals. The Bi-doped

PbTe nanocrystals doped with 1.5 mol% Bi3+ exhibited a high

Seebeck coefficient of �325 mV K�1 at 350 K, which is consistent

with the theoretical value (�350 mV K�1) for n-type PbTe

structures that possess the same electron carrier concentration.31

The Hall mobility of films made from Bi-doped PbTe nano-

crystals (1 mol% Bi3+) was derived by using mH ¼ RH/r, (where

mH, RH, and r refer to the Hall mobility, Hall coefficient and the

electrical resistance, respectively) and plotted as a function of

logT from 300 to 100 K (Fig. 5, left panel). The Hall mobility of

the Bi-doped film (�0.6 cm2 V�1 s�1) at 300 K is lower than that

of the undoped film (�2.1 cm2 V�1 s�1), which is attributed to the

inverse relationship between carrier concentration and Hall

mobility. In the right panel of Fig. 5, the log mH vs. logT graph

was presented, giving rise to the power exponent d (m z T�d) of

�1.9 at 100–200 K and �3.5 at 200–300 K with the logmH curve

deviating from a straight line at �200 K. The results, which are

also found in Pb0.99La0.01Te bulk materials, are consistent with

the behavior of the weakly or intermediate degenerate n-type

PbTe semiconductors.32

Conclusions

We have developed a new method for the synthesis of single-

crystalline Bi-doped PbTe nanocrystals by using bismuth(III)

2-ethylhexanoate as the Bi3+ precursor. The incorporation of the

Bi3+ dopant at different doping levels in the nanocrystal host

lattice was confirmed by XRD, XPS, and Hall measurements.

Importantly, we have demonstrated that the doping approach

imparts a substantial impact on the growth process to give dual

control over the size and shape of the resulting nanocrystals.

Investigation of the thermoelectric properties of films made from

these nanocrystals shows decreased electrical resistance from 350

to 650 K as compared to undoped nanocrystal films.
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