
Chem

Article

Calcium-Overload-Mediated Tumor Therapy by Calcium Peroxide Nanoparticles

With their unique biological effects on tumor microenvironment, catabolites of nanoparticles can make a significant difference for tumor suppression. We report a facile synthesis method of ultrasmall calcium peroxide nanoparticles and demonstrate their rapid decomposition in tumor region. This can trigger a destructive calcium overload process in tumor cells, lead to cell death, and further tissue calcification, which also allows for medical imaging.

Meng Zhang, Ruixue Song, Yanyan Liu, ..., Yang Liu, Xiaogang Liu, Wenbo Bu

chmlx@nus.edu.sg (X.L.) wbbu@chem.ecnu.edu.cn (W.B.)

HIGHLIGHTS

A simple synthetic strategy for ultrasmall calcium peroxide nanoparticles is reported

The nanoparticles show pH-sensitive calcium ions and $\mathrm{H_2O_2}$ release

The release behavior realizes tumor calcium overload and promotes calcification

Great antitumor efficacy is verified for modified calcium peroxide nanoparticles

Zhang et al., Chem 5, 1–12 August 8, 2019 © 2019 Elsevier Inc. https://doi.org/10.1016/j.chempr.2019.06.003

Chem

Article

Calcium-Overload-Mediated Tumor Therapy by Calcium Peroxide Nanoparticles

Meng Zhang,^{1,2} Ruixue Song,³ Yanyan Liu,³ Zhigao Yi,⁴ Xianfu Meng,³ Jiawen Zhang,⁵ Zhongmin Tang,^{1,2} Zhenwei Yao,⁵ Yang Liu,³ Xiaogang Liu,^{4,*} and Wenbo Bu^{1,3,6,*}

SUMMARY

Calcium overload, characterized by an abnormal cytoplasm accumulation of free calcium ions (Ca²⁺), is a widely recognized cause of damage in numerous cell types and even of cell death. This undesirable destructive process can become a new tool applicable to cancer treatment. Herein, on the basis of the unique biological effect of Ca²⁺, we demonstrate a highly efficient strategy for tumor therapy by utilizing pH-sensitive sodium-hyaluronate-modified calcium peroxide nanoparticles (SH-CaO₂ NPs). These NPs create an artificial calcium overloading stress in tumor cells, which is responsible for cell death. Notably, the killing effect is not limited to tumor types or hypoxic cells, and normal cells are more tolerant of the adverse influence of NPs than tumor cells. The Ca²⁺ enrichment also increases the likelihood of tumor calcification, which could contribute to *in vivo* tumor inhibition and facilitate medical imaging to monitor the treatment efficacy.

INTRODUCTION

In clinical tumor treatment, internal calcification has frequently been observed after radiotherapy or chemotherapy in certain tumor types.^{1–3} Calcification may be associated with tumor cell death, but the intrinsic cause of cell death remains unknown. It is well known that the common biological effect of chemotherapy drugs and highenergy radiation is the production of a large number of free radicals in tumor cells.^{4–6} Calcification, a slow progression of calcium salt deposition in local tissues initiated by the accumulation of localized calcium ions, is a possible outcome of the calcium overload process.^{7–9} These factors suggest that the process of calcification comprises a series of secondary reactions caused by free-radical-induced intracellular calcium overload. However, this possibility cannot fully explain why tumors that have become calcified over time often show better treatment response.

Given the importance of calcium ions in multiple cellular processes, including proliferation, metabolism, and death,¹⁰ there may be an alternative explanation. While free radicals exert strong anticancer effects mainly by directly attacking doublestranded DNA sequences and causing irreparable proliferation-related damage, free-radical-induced calcium signaling disorders are also considered to contribute to cell death. In other words, the induced calcium overloading process is not an inconsequential or trivial process but could be another efficient "destructive factor" against tumor cells in addition to free radicals. Likewise, calcification is not a mere by-product of cancer treatment but a strong proof and external manifestation of the role of the calcium overload mechanism. Overall, free radicals and calcium overload in cells do not merely share mutual causation but a mutual reinforcement or synergistic effect for tumor therapy. Unfortunately, the cell-damaging functions of Ca²⁺

The Bigger Picture

Metal ions with diverse cellular biological effects can play more important roles in cell metabolism and proliferation than expected. Any alteration of the metalcontent balance could induce a series of intracellular responses, even cell death. Ferroptosis is one of the typical examples that have been applied in tumor treatment. This inspires further studies of other functional metal ions and the development of novel strategies for efficient cancer therapy. We report the design of pH-responsive calcium peroxide nanoparticles and show that the quick release of calcium ions under tumor microenvironment can efficiently induce calcium overload and calcification, which are both damaging against tumor survival. In vivo evaluation also reveals the tumor-suppression efficiency by modified nanoparticles. This strategy, which is denoted as ioninterference therapy, highlights the availability of other metal ions in oncotherapy and opens a new door for further clinical cancer treatment.

Chem

CellPress

have been long neglected in designing nanomaterial-based antitumor drugs, and there are almost no reports on the development of calcium-based nanomedicine to induce intracellular calcium overloading for combined treatment.

Herein, by making good use of the unique cytotoxicity mechanism of Ca²⁺, we prepared calcium peroxide nanoparticles (CaO₂ NPs) to demonstrate the unexplored role of calcium overload in tumor therapy, which is of equal importance to reactive oxygen species (ROS), and further elaborated its great potential in clinical cancer treatment. CaO₂ NPs are pH sensitive and would slowly decompose into free Ca²⁺ and H₂O₂ in the acidic tumoral microenvironment,^{11,12} leading to intracellular calcium overload and oxidative stress, respectively, in cells at the same time. For tumor cells in which catalase (CAT) is downregulated,¹³ the constant challenge from oxidative stress would alter protein functions, resulting in the desensitization of calcium-related channels followed by an uncontrollable cellular accumulation of Ca²⁺.¹⁴ This biological effect could hinder the accurate transmission of calcium signals and induce cell death.^{10,15} Meanwhile, the enrichment of Ca²⁺ is more likely to engender tumor calcification, which would benefit in vivo tumor inhibition and simultaneously facilitate computed tomography (CT) imaging diagnosis of the treatment efficacy.^{31,32} By comparison, healthy cells are more tolerant of the adverse influence of NPs. This could be attributed to the presence of a sufficient amount of CATs that prevent oxidative activation of the cells and thus allow the exogenous Ca²⁺ to be more efficiently pumped out or stored through calcium channels (Figure 1). When stabilized with sodium hyaluronate through surface modification, these CaO₂ NPs are stable in body fluids until the protective layer is degraded by hyaluronidase.^{16,17} Considering the negligible systemic biological toxicity of Ca²⁺, ease of particle synthesis, and economically available raw materials, we believe that sodium-hyaluronate-modified calcium peroxide nanoparticles (SH-CaO₂ NPs) have potential utilities for clinical applications in cancer therapy. Besides, the strategy of ioninterference tumor therapy may also hold promise as an effective cancer therapeutic tool complementary to traditional clinical tumor treatment.

RESULTS

Characterization of SH-CaO₂ NPs

Sodium-hyaluronate-modified CaO₂ NPs were prepared through a simple and quick wet-chemistry method in a methanol-water system at room temperature. As shown in transmission electron microscopy (TEM) images, the obtained NPs had good crystallinity, with an average particle size smaller than 5 nm (Figures 2A and 2B), which could be regulated by changing the alkalinity of the mixture during preparation. X-ray diffraction (XRD) characterization confirmed that the diffraction peaks of the as-prepared products are well in accord with those of the tetragonal CaO₂ standard card (PDF#03-0865), signifying the successful formation of CaO₂ crystalline NPs (Figure 2C). Effective modification with sodium hyaluronate, which was performed alongside the nucleation and growth of the CaO₂ NPs to confine the grain size, was achieved by the attraction between the negatively charged ions and positively charged nanocrystals.¹⁸ The zeta-potential changes of the NPs verified this supposition, as the zeta potential decreased by approximately 10 mV after the modification (Figure S1), and thermogravimetric analysis (TGA) showed a greater mass loss, which further indicated the efficient modification (Figure S2). In addition, while the hydrodynamic size distribution was narrow, the hydrodynamic diameter seemed to be larger than the one displayed in the TEM images (Figure S3). This discrepancy could be partially explained by the hydrogen bonding networks among the NPs, which is consistent with the appearance of a broad absorption peak at 3,600-3,200 cm⁻¹ in the Fourier transform infrared (FTIR) absorption spectrum that

¹State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

⁴Department of Chemistry, National University of Singapore, Singapore 117543, Singapore

⁵Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China ⁶Lead Contact

*Correspondence: chmlx@nus.edu.sg (X.L.), wbbu@chem.ecnu.edu.cn (W.B.)

https://doi.org/10.1016/j.chempr.2019.06.003

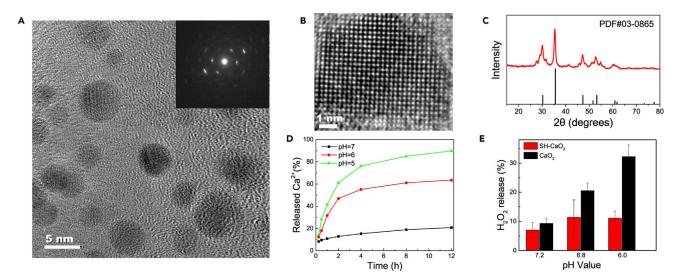
Chem

CellPress

Figure 1. Schematic Representation of the Functional Pattern of SH-CaO₂ NPs

In the acidic microenvironment of a tumor region, SH-CaO₂ NPs are decomposed into Ca²⁺ and H₂O₂ molecules. The low expression of catalase in tumor cells causes abnormal cellular H₂O₂ accumulation and an imbalanced calcium transport pathway, thereby resulting in an efficient cellular calcium overload and subsequently the induction of cell death. Meanwhile, the enriched local concentration of Ca²⁺ increases the likelihood of tumor calcification.

represents the hydrogen-bonded O–H stretching vibration (Figure S4). Moreover, the characteristic peaks around 831, 881, and 1,115 $\rm cm^{-1}$ also verified the existence of peroxide groups.¹⁹


The pH-triggered release of Ca^{2+} by the decomposition of CaO_2 NPs was then evaluated in various pH buffers. Within 12 h, fewer than 10% of the Ca^{2+} were released at pH 7.0, whereas more Ca^{2+} was produced in a mimetic acidic microenvironment, with approximately 50% discharge at pH 6.0 and 80% at pH 5.0 (Figure 2D). This suggested that the CaO_2 NPs were pH sensitive and would decompose into Ca^{2+} in an acidic microenvironment. The reason was unambiguous: in contrast to the slow progression of hydrolysis relying on protons produced by water ionization under neutral conditions, the decomposition speed of CaO_2 NPs would be suddenly accelerated in an acidic environment, depending on the proton concentrations surrounding the NPs. The chemical reaction equation could be written as follows:

$$CaO_2 + 2H^+ \rightarrow Ca^{2+} + H_2O_2.$$

Unlike Ca^{2+} already existing in the blood, the leakage of oxidizing H_2O_2 in the blood is not favored. Therefore, sodium hyaluronate as a protective layer was modified on the surface of CaO_2 NPs. The layer could block the direct exposure of the CaO_2 core

Chem

CelPress

Figure 2. Characterization of SH-CaO₂ NPs

(A) TEM images of calcium peroxide nanoparticles (inset: a TEM electron diffraction image).

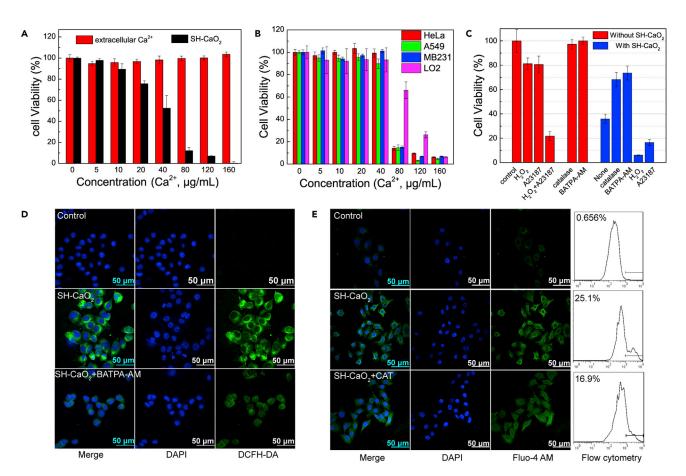
(B) High-resolution TEM image of the calcium peroxide nanocrystals.

(C) X-ray powder diffraction pattern of the SH-CaO₂ NPs.

(D) Time-dependent Ca^{2+} release from the CaO_2 NPs dispersed in buffer solutions of different pH values. The release of calcium was clearly accelerated under acidic conditions.

(E) H_2O_2 production via CaO₂ and SH-CaO₂ NPs over a 2 h timespan at different pH values. The decomposition of NPs was prevented after surface modification with sodium hyaluronate.

Data are represented as mean \pm SD.


to the surrounding protons, thus reducing the degradation of SH-CaO₂ NPs during blood circulation (pH 7.4). Moreover, the $-COO^-$ groups in the sodium hyaluronate molecule tended to compete for protons and bind them, which further increased the resistance to some weak pH oscillations. In comparison with unmodified NPs, SH-CaO₂ NPs generated less H₂O₂ under slightly acidic buffer solution, implying that the modified NPs were less harmful before arrival in the tumor region (Figures 2E and S5). Upon uptake by tumor cells, the protective sodium hyaluronate layer of the NPs could be degraded by intracellular hyaluronidase and the CaO₂ core begins to take the therapeutic effect.

In Vitro Cytotoxicity Mechanism of SH-CaO₂ NPs

As a second messenger in intracellular signal transmission, calcium signals are sent through the activation or inactivation of specific targets (proteins, nucleic acids, etc.) to control vital physiological processes, which is achieved essentially under the fluctuations in local calcium concentration.^{20,21} Any Ca²⁺ concentration changes caused by non-cellular regulation would disturb the calcium signals and influence multiple cell activities. In particular, under oxidative stress, the calcium channels in a cell are functioning abnormally, and the cellular Ca²⁺ concentration becomes difficult to re-modulated to a normal state, resulting in calcium-overload-induced cell death.¹⁴ This process can be defined as "calcicoptosis." The hypothesis was firstly evidenced by a simple treatment of Ca^{2+} plus H_2O_2 with 4T1 cells, which showed a sharp decrease in cell viability and an enhancement of intracellular Ca²⁺ concentration (Figure S6). Then, SH-CaO₂ NPs were studied in detail. While incubation with Ca²⁺ alone or a low concentration of pH-sensitive SH-CaO₂ NPs was harmless to 4T1 cells, higher concentrations of NPs demonstrated a rapid increase in cytotoxicity (Figure 3A). This result could be explained by the excessive hydrogen-peroxideinduced oxidative stress, switching the regulatory "Ca²⁺ code" to a signal for cell

Chem

CellPress

Figure 3. SH-CaO₂ NPs Could Efficiently Induce Tumor Cell Death by Releasing Massive Amounts of Free Calcium and H₂O₂

(A) Cell-viability assay in 4T1 cells incubated with $CaCl_2$ or SH-CaO₂ NPs.

(B) Cell-viability assay in human tumor cells (HeLa, A549, and MB231) or normal cells (LO2) incubated with SH-CaO₂ NPs. Normal cells were more tolerant of SH-CaO₂ NPs.

(C) Cell-viability assay in 4T1 cells incubated with or without SH-CaO₂ NPs and different reagents, including A23187 (calcium ionophores), BAPTA-AM (calcium chelators), H_2O_2 , and catalase. Ca²⁺ played an essential role in cell death and were of equal importance to H_2O_2 .

(D) ROS production in 4T1 cells after $\rm SH\text{-}CaO_2$ NP treatment.

(E) Free-calcium generation in 4T1 cells after SH-CaO $_2$ NP treatment.

Data are represented as mean \pm SD.

death. Satisfactorily, the remarkable killing effect was not limited by tumor type, as the SH-CaO₂ NPs could efficiently destroy multiple types of human tumor cells, including cervical, breast, and lung carcinoma, whereas normal human cells managed to tolerate the adverse influence of NPs with much higher cell viabilities than tumor cells under the same treatment. This higher tolerance was attributed to the presence of a sufficient amount of CAT to prevent the normal cells from entering an oxidative stress state caused by excessive H_2O_2 (Figure 3B). Furthermore, SH-CaO₂ NPs were still effective against hypoxic tumor cells, with approximately 80% cell damage when incubated with 1 mmol/L NPs, revealing the potential of treating hypoxic tumors (Figure S7).

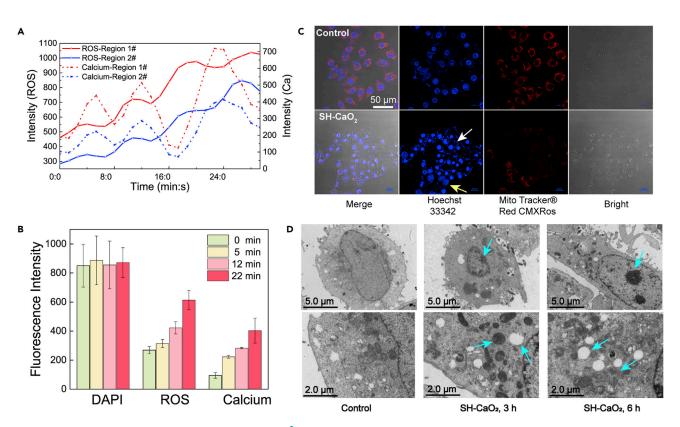
To further validate the pivotal role of calcium overload in cell death, we first incubated H_2O_2 and A23187, a calcium ionophore that specifically carries extracellular Ca²⁺ into cells, concurrently with 4T1 cells for 24 h, simulating the working pattern of SH-CaO₂ NPs in cells. In contrast to the 80% cell viabilities after treatment with H_2O_2 or A23187 alone, the cell survival rate of "simulated NPs" dropped sharply

Chem

CellPress

to approximately 22% at the same concentration. Moreover, when the excessive Ca^{2+} ions (or H_2O_2) released by SH-Ca O_2 NPs were inhibited by the calcium chelator BAPTA-AM (or CAT), the NP-induced cell damage was reduced by more than half; in contrast, the addition of extra calcium ionophores (or H_2O_2) along with SH-Ca O_2 NPs would double the cell death (Figure 3C). All these results illustrated that the role of Ca^{2+} was as important as that of H_2O_2 in the Ca O_2 -induced cell death procedure *in vitro*.

The generation of ROS and Ca²⁺ was then monitored by confocal laser scanning microscopy (CLSM). The control group exhibited weak green luminescence, while the group cultivated with SH-CaO2 NPs exhibited strong intracellular luminescence, indicating the release of the exogenous free Ca^{2+} and H_2O_2 (Figures 3D and 3E). Interestingly, the addition of calcium chelators decreased the H_2O_2 output, as the fluorescence weakened after treatment with NPs and BAPTA-AM. Similarly, the intracellular free- Ca^{2+} output was also reduced by incubation with CAT and NPs (Figure 3E). This phenomenon further indicates the interrelationship between calcium and H_2O_2 in cells.^{20–23} Because both are signaling molecules, the induced increases of calcium overload and ROS will create a self-amplifying loop in cells.^{22,23} On the one hand, the cytosol Ca²⁺ accumulation will stimulate NADPH oxidase activity that is responsible for ROS generation, and the process of Ca²⁺-promoted ATP synthesis can also induce the respiratory chain electron leakage and ROS levels increase.²⁴ On the other hand, ROS increase can provoke Ca²⁺ entry by modulating the plasma membrane Ca²⁺ channels (e.g., VDCC, TRP, and SOCE), intracellular calcium channels (e.g., RyR and IP₃R), and Ca²⁺ATPases. Therefore, although the incubated SH-CaO₂ NPs can release Ca^{2+} and H_2O_2 , the detected calcium and ROS fluorescence signal is not just for the SH-CaO₂ NPs degradation but also involves the result of cellular stress responses. Downregulating calcium levels (or ROS levels) can relieve the cellular stress response, and cells can jump out of the self-amplifying loop with self-regulation to a chemical equilibrium. As a result, the collected ROS (or calcium) signals finally decreased.

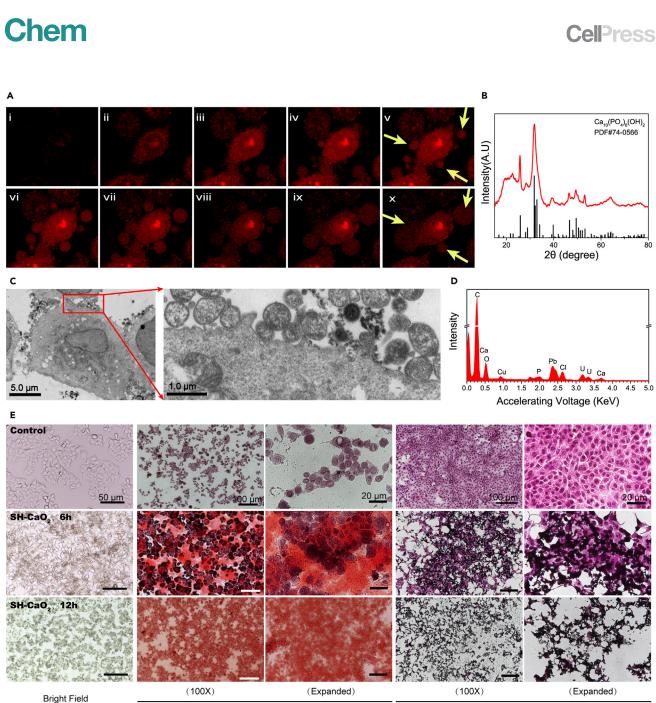

To further "visualize" the intracellular degradation of SH-CaO₂ NPs, we cultivated cells loaded with fluorescent probes with NPs for 4 h and imaged them every 80 s by CLSM (Video S1). In the first 22 min, in addition to the "calcium sparks" phenomenon,^{25,26} we observed dynamic increases in green and red fluorescence, which was direct proof of the generation of Ca²⁺ and H₂O₂ in the cells (Figures 4A, 4B, and S8). Unexpectedly, the intracellular release of Ca²⁺ coincided with an exocytosis process of excessive calcium, accompanied by the formation of numerous small vesicles outside the cell membrane (Videos S2 and S3). Meanwhile, after incubation with SH-CaO₂ NPs, the cell nucleus became condensed, and the mitochondrial activity was drastically reduced (Figures 4C and S9);²⁷ there were further distinguishing morphological changes of apoptosis in the microstructure, such as the marginalization and densification of chromatins into dense masses, mitochondrial swelling, and the vesicular-like expansion and vacuolization of the endoplasmic reticulum (Figure 4D).²⁸ All these phenomena further indicate that the calcium overload had seriously disturbed the normal proliferation of cells and ultimately resulted in cell death.

Formation of Calcified Nodules by SH-CaO₂ NPs

Accompanied by the cell uptake of SH-CaO₂ NPs, we also observed the formation of small vesicles outside of the cell membrane, which was a very fast process that spanned only a few minutes (Figure 5A). Since the formed small vesicles contained high concentrations of free Ca²⁺ similar to those in matrix vesicles (MVs; extracellular organelles formed by chondrocytes or bone cells that functions in osteogenesis and

Chem

CellPress


Figure 4. Visualization of the Cellular Release of H₂O₂ and Ca²⁺ and of Cell Death

(A) Time-dependent fluorescence intensity of ROS and calcium in different regions of interest (ROIs) by CLSM (see also Figure S8 and Video S1). (B) Average fluorescence-intensity changes of ROS and calcium in the marked ROI show intracellular degradation of SH-CaO₂ NPs. Data are represented as mean \pm SD.

(C) Changes of the nucleus and mitochondrial membrane potential before and after the SH-CaO₂ NP treatment as observed by CLSM. The yellow arrow indicates a normal nucleus, whereas the white arrow indicates a condensed nucleus.

(D) Morphological changes in subcellular organelles of tumor cells before and after treatment with SH-CaO₂ NPs for 3 or 6 h (observed by bio-TEM) confirm that the SH-CaO₂-NP-induced calcium overload resulted in tumor death.

mineralization),^{29,30} they were considered to have the same self-calcification ability. Indeed, energy dispersive X-ray (EDX) analysis confirmed the existence of O, Ca, and P elements within the vesicles (Figures 5C, 5D, and S10). Additionally, the collections of cells undergoing exocytosis were also characterized to be the hydroxyapatite phase by XRD, which further validated the calcification potential of the MV-like vesicles (Figure 5B). Biomineralization was then performed in vitro and measured by Alizarin Bordeaux and von Kossa staining, two staining methods that are frequently applied to detect calcified nodules, which are dyed red and black, respectively. In contrast with the control group, there was a wide calcified area in the group incubated with SH-CaO₂ NPs for 6 h; after 12 h of treatment, almost all cells were thoroughly mineralized (Figure 5E). Moreover, this biomineralization could remain in place in vivo and be imaged by a CT scanner. In the tumor-bearing mouse model, despite the weakly enhanced CT signal 3 h after the injection, SH-CaO₂ NPs could speed up the process of tumor calcification. Three days after a single injection, the tumor region was reduced and brightened in the CT image; for the larger tumor model, the densified microcalcification was more apparent after multiple injections (Figures 6A and 6B). Histological analysis of the tumor sections further illustrated the existence of tumor calcification (Figures 6C and S11). This satisfactory calcification effect would benefit the in vivo tumor inhibition and facilitate CT imaging to monitor the efficacy of treatment as well.^{31,32}

von Kossa Staining

Figure 5. The Observation and Identification of Cell Calcification In Vitro

(A) The formation and exocytosis of calcium-enriched small vesicles after treatment with SH-CaO₂ NPs, as shown in a single cell (yellow arrows). The intracellular free-calcium ions were tracked by a calcium red fluorescent probe (see also Videos S2 and S3).

(B) X-ray powder diffraction pattern of the collected products from cell exocytosis after treatment with SH-CaO₂ NPs.

(C) Bio-TEM images of 4T1 cells after treatment with SH-CaO₂ NPs for 6 h show the formation of small vesicles outside of the membrane (see also Figure S10).

(D) Energy-dispersive X-ray (EDX) spectrum of the products of exocytosis after the treatment of SH-CaO₂ NPs shows the existence of mineralization. Cell samples were stained with uranium salts and lead salts for TEM observation.

(E) Identification of the products of exocytosis *in vitro* with Alizarin Bordeaux staining and von Kossa staining, which show the calcified areas in red and black, respectively.

In Vivo Tumor Growth Inhibition by SH-CaO₂ NPs

The antitumor therapeutic effect of SH-CaO₂ NPs was next evaluated in a 4T1 subcutaneous tumor model and an orthotopic tumor model *in vivo*. First, the SH-CaO₂ NPs were proved to be biocompatible and tolerated under the dosage of 75 mg/kg

Chem

CellPress

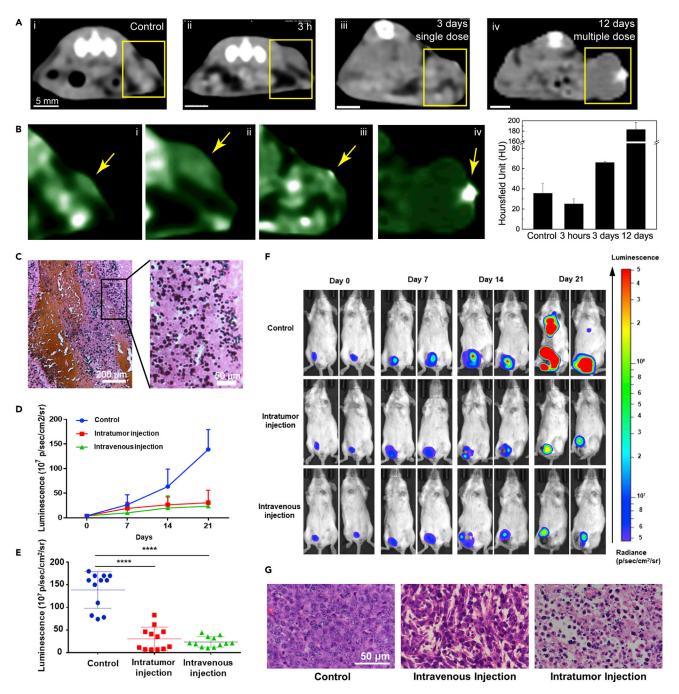


Figure 6. Identification of Calcification in the Tumor Region and Tumor-Growth Inhibition In Vivo

(A) CT images of mice after the following treatments: (i) control, (ii) 3 h after the intratumor injection of SH-CaO₂ NPs, (iii) 3 days after the injection of a single dose of SH-CaO₂ NPs for a small tumor, and (iv) 12 days after the injection of multiple dose (four times, injected every 2 days) for a larger tumor.

(B) Pseudocolor CT images of tumors (i-iv) and the corresponding Hounsfield unit (HU) values of the microcalcification.

(C) von Kossa staining of tumor tissue sections after multiple injections with SH-CaO₂ NPs.

(D) Tumor luminescence changes of different groups after varied treatments (n = 12 in each group).

(E) Tumor luminescence of each mouse in different groups after 21 days of tumor growth.

(F) Photographs of mice tumor luminescence in different groups.

(G) H&E staining of tumor tissue sections after treatment with normal saline or SH-CaO₂ NPs.

Data are represented as mean \pm SD; statistical analysis was performed by Student's t test (****p < 0.0001 versus control).

Chem

in vivo given that histological analysis and blood physiological-biochemical analysis revealed no pathological changes in the 30 days following injection (Figures S12 and S13), and the maximum tolerated dose of NPs was then determined to be 110 mg/kg (Table S1; Figures S14–S16). Next, the biodistribution of Ca²⁺ content in major organs suggested the high aggregation and retention ability of SH-CaO₂ NPs in tumor region, ensuring its excellent tumor-killing effect (Figure S17). In subcutaneously implanted tumor models, there was remarkable antitumor efficacy for SH-CaO₂ NPs, such that the tumor almost disappeared during the 14-day observation period after the intratumor injection (Figures S18 and S19). H&E staining and TUNEL (TdT-mediated dUTP nick-end labeling) immunofluorescence also proved cell death 2 days after the injection (Figure S18C). For orthotopic mouse models, in contrast with the control group that have obvious tumor metastasis, both the injection groups exhibited a significant tumor-growth-inhibition effect without distant metastasis (Figures 6D and 6F). The unchanged body weight during the treatments also suggested the great biocompatibility at a given injection dose (Figure S20). Additionally, H&E staining of tumor sections further illustrated the mass death of tumor cells, compared with the controls, while the histological analysis revealed no damages to major organs (Figures 6G and S21). Overall, these therapeutic studies in vivo demonstrated that SH-CaO₂ NPs would be a good candidate for effective anticancer therapy with little potential biological side effects.

DISCUSSION

We have reported the room-temperature synthesis of pH-sensitive SH-CaO₂ NPs through a rapid wet-chemistry method and examined the ability of these nanoparticles to release free Ca²⁺ and H₂O₂ in an acidic tumor microenvironment. Because CAT is downregulated in tumor cells, the cells are more vulnerable and easily driven into oxidative stress by excessive cellular H₂O₂, which may alter the calcium channels and result in abnormal retention of the generated Ca²⁺ in cells. This kind of calcium overload would irreversibly switch the calcium signals from "regulating" to "destroying" and subsequently induce cell death. Since Ca²⁺ are essential in various types of cells, tumor type and oxygen partial pressure do not limit the killing effect. Moreover, SH-CaO₂ NPs are observed to be capable of initiating cell calcification during the therapeutic process, which could further benefit tumor inhibition. Further studies on the specific cell-death pathway of SH-CaO₂ NPs and the mechanism of cell calcification is expected to benefit CT imaging in monitoring the efficacy of treatment.

On a separate note, this calcium-mediated strategy highlights the importance of the biological effects of those metal ions that are often overlooked in conventional tumor treatment, and we summarize this kind of antitumor strategy as "ion-interference therapy." The *in-situ*-degraded products of nanomaterials—including metal ions, anions, small molecules, and clusters—can really make a difference for tumor treatment with their unique biological effects and interactions with the tumor microenvironment.^{33–36} The emergence of ferroptosis and gas therapy (e.g., NO and H₂S) provides some good examples.³⁷ With the in-depth understanding of their invisible effects to tumor regions and in turn taking advantage of them, the idea of "ion-interference therapy" will potentially open up a new opportunity for the development of antitumor strategies.³⁸

EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the Supplemental Information.

CellPress

Chem

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.chempr. 2019.06.003.

ACKNOWLEDGMENTS

The authors greatly acknowledge the financial support from the National Funds for Distinguished Young Scientists (grant 51725202), the National Natural Science Foundation of China (grant 51872094), the National Science Foundation for the Young Scientists of China (grant 51702211), and the Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong. We thank Hua Zhang and Shiman Wu (Department of Radiology, Huashan Hospital, Fudan University) for the CT imaging and helpful discussion. We thank Dr. Xingwu Jiang and Yelin Wu (Shanghai Tenth People's Hospital, Tongji University School of Medicine) for the establishment of orthotopic tumor models for *in vivo* evaluation. We also thank Chenxi Zhu (Shanghai Institute of Ceramics, Chinese Academy of Sciences) for help on the TEM analysis of nanoparticles.

AUTHOR CONTRIBUTIONS

Conceptualization, M.Z.; Methodology, M.Z., X.L., and W.B.; Investigation, M.Z., R.S., X.M., Yang Liu, Z.Y., and J.Z.; Writing – Original Draft, M.Z.; Writing – Review & Editing, M.Z., Yanyan Liu, Z.T., Z.Y., X.L., and W.B.; Supervision, X.L. and W.B.; Funding Acquisition, W.B.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 21, 2019 Revised: May 15, 2019 Accepted: June 6, 2019 Published: July 3, 2019

REFERENCES AND NOTES

- Flament-Durand, J., Ketelbant-Balasse, P., Maurus, R., Regnier, R., and Spehl, M. (1975). Intracerebral calcifications appearing during the course of acute lymphocytic leukemia treated with methotrexate and X rays. Cancer 35, 319–325.
- Drago, P.C., Badalament, R.A., Lucas, J., and Drago, J.R. (1989). Bladder wall calcification after intravesical mitomycin C treatment of superficial bladder cancer. J. Urol. 142, 1071– 1072.
- Sheline, G.E., Wara, W.M., and Smith, V. (1980). Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 6, 1215–1228.
- Keizer, H.G., Pinedo, H.M., Schuurhuis, G.J., and Joenje, H. (1990). Doxorubicin (adriamycin): a critical review of free radicaldependent mechanisms of cytotoxicity. Pharmacol. Ther. 47, 219–231.
- Her, S., Jaffray, D.A., and Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv. Drug Deliv. Rev. 109, 84–101.

- Riley, P.A. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33.
- Cross, B.M., Breitwieser, G.E., Reinhardt, T.A., and Rao, R. (2014). Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am. J. Physiol. Cell Physiol. 306, C515–C526.
- Fleckenstein-grün, G., and Fleckenstein, A. (2009). Calcium — a neglected key factor in arteriosclerosis. The pathogenetic role of arterial calcium overload and its prevention by calcium antagonists. Ann. Med 23, 589–599.
- 9. Floersheim, G.L. (1992). Calcium antagonists protect mice against lethal doses of ionizing radiation. Br. J. Rad *65*, 1025–1029.
- Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calciumapoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565.
- Liu, L.H., Zhang, Y.H., Qiu, W.X., Zhang, L., Gao, F., Li, B., Xu, L., Fan, J.X., Li, Z.H., and Zhang, X.Z. (2017). Dual-stage light amplified photodynamic therapy against hypoxic tumor

based on an O_2 self-sufficient nanoplatform. Small 13, 1701621.

- Huang, C.-C., Chia, W.-T., Chung, M.-F., Lin, K.-J., Hsiao, C.-W., Jin, C., Lim, W.-H., Chen, C.-C., and Sung, H.-W. (2016). An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 138, 5222–5225.
- Doskey, C.M., Buranasudja, V., Wagner, B.A., Wilkes, J.G., Du, J., Cullen, J.J., and Buettner, G.R. (2016). Tumor cells have decreased ability to metabolize H₂O₂: implications for pharmacological ascorbate in cancer therapy. Redox Biol. 10, 274–284.
- Ermak, G., and Davies, K.J. (2002). Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol 38, 713–721.
- Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., and Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca²⁺ transfer in the control of apoptosis. Oncogene 27, 6407–6418.
- Wang, J., Liu, J., Liu, Y., Wang, L., Cao, M., Ji, Y., Wu, X., Xu, Y., Bai, B., Miao, Q., et al. (2016). Gd-hybridized plasmonic Au-nanocomposites

Chem

CellPress

enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. *28*, 8950–8958.

- Goh, E.J., Kim, K.S., Kim, Y.R., Jung, H.S., Beack, S., Kong, W.H., Scarcelli, G., Yun, S.H., and Hahn, S.K. (2012). Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules 13, 2554–2561.
- Sperling, R.A., and Parak, W.J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Proc. R. Soc. A 368, 1333–1383.
- Tu, Y. (2016). Artemisinin—a gift from traditional Chinese medicine to the world (Nobel lecture). Angew. Chem. Int. Ed. 55, 10210–10226.
- Yan, Y., Wei, C.L., Zhang, W.R., Cheng, H.P., and Liu, J. (2006). Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol. Sin. 27, 821–826.
- Kiselyov, K., and Muallem, S. (2016). ROS and intracellular ion channels. Cell Calcium 60, 108–114.
- Görlach, A., Bertram, K., Hudecova, S., and Krizanova, O. (2015). Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271.
- Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., and Sheu, S.-S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol 287, C817– C833.
- 24. Votyakova, T.V., and Reynolds, I.J. (2005). Ca2+-induced permeabilization promotes free

radical release from rat brain mitochondria with partially inhibited complex I. J. Neurochem. 93, 526–537.

- 25. Cheng, H., and Lederer, W.J. (2008). Calcium sparks. Physiol. Rev. *88*, 1491–1545.
- Cheng, H., Lederer, M.R., Lederer, W.J., and Cannell, M.B. (1996). Calcium sparks and [Ca2+] i waves in cardiac myocytes. Am. J. Physiol. Cell Physiol. 270, C148–C159.
- Duchen, M.R. (2000). Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529, 57–68.
- Zhang, C., Ni, D., Liu, Y., Yao, H., Bu, W., and Shi, J. (2017). Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 12, 378–386.
- 29. Anderson, H.C. (2003). Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5, 222–226.
- Anderson, H.C. (1995). Molecular biology of matrix vesicles. Clin. Orthop. Relat. Res, 266–280.
- Zhao, R., Wang, B., Yang, X., Xiao, Y., Wang, X., Shao, C., and Tang, R. (2016). A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angew. Chem. Int. Ed. 55, 5225– 5229.
- Kim, S., Palanikumar, L., Choi, H., Jeena, M.T., Kim, C., and Ryu, J.-H. (2018). Intramitochondrial biomineralization for inducing apoptosis of cancer cells. Chem. Sci. 9, 2474– 2479.

- 33. Lin, L.S., Song, J., Song, L., Ke, K., Liu, Y., Zhou, Z., Shen, Z., Li, J., Yang, Z., Tang, W., et al. (2018). Simultaneous Fenton-like ion delivery and glutathione depletion by MnO₂-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 130, 4996– 5000.
- Zhou, W., Pan, T., Cui, H., Zhao, Z., Chu, P.K., and Yu, X.F. (2019). Black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angew. Chem. Int. Ed. 131, 779–784.
- Zhang, Y., Yang, Y., Jiang, S., Li, F., Lin, J., Wang, T., and Huang, P. (2018). Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Mater. Horiz. 6, 169–175.
- 36. Li, X., Wang, X., Zhang, J., Hanagata, N., Wang, X., Weng, Q., Ito, A., Bando, Y., and Golberg, D. (2017). Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun. 8, 13936.
- 37. Stockwell, B.R., Friedmann Angeli, J.P.F., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascón, S., Hatzios, S.K., Kagan, V.E., et al. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285.
- Zhang, M., Shen, B., Song, R., Wang, H., Bin, L., Meng, X., Liu, Y., Liu, Y., Zheng, X., Su, W., et al. (2019). Radiation-assisted metal ion interference tumor therapy by barium peroxide-based nanoparticles. Mater. Horiz. 6, 1034–1040.