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Abstract—Current developments being made in upper limb
prostheses are focused on replacing lost sensory information
to the amputees. Providing sensory stimulation from the
prosthesis can directly improve control over the prosthetic
and provide a sense of body ownership. The focus of this
review article is on recent developments while including
foundational knowledge for some of the critical concepts in
neural prostheses. Reported concepts follow the flow of
information from sensors to signal processing, with emphasis
on texture recognition, and then to sensory stimulation
strategies that reestablish the lost sensory feedback loop.
Prosthetic sensors are used to detect the physical environ-
ment, converting pressure, force, and position into electrical
signals. The electrical signals can then be processed in an
effort to identify the surrounding environment using distinc-
tive characteristics such as stiffness and texture. In order for
the amputee to use this information in a natural manner,
there must be real-time sensory stimulation, perception, and
motor control of the prosthesis. Although truly complete
sensory replacement has not yet been realized, some basic
percepts can be partially restored, allowing progress towards
a more realistic prosthesis with natural sensations.

Keywords—Nerve electrodes, Sensory feedback, Biomimetic,

Noninvasive stimulation, Embodiment, Phantom limb stim-

ulation.

INTRODUCTION

The parallel advances across neuroscience, neuro-
engineering, electronics, and robotics in recent years
have led to the development of advanced prostheses.
Nevertheless, real-time, accurate, and reliable control
of robotic prostheses remains to be effectively
achieved.67 It has been estimated that 40% to 60% of
amputees reject the use of their new prostheses, most
often due to the lack of fine, precise motor control and
unnatural feelings and perceptions.5,53 There is still an
unmet need to develop more realistic and sophisticated
sensory feedback systems in order to provide a sense of
embodiment or body ownership of these prostheses,
which is one of the main focuses of scientists presently.

The natural sensory feedback loop is an intuitive
process for healthy individuals. As afferent fibers are
stimulated in response to grasping objects or through
dexterous movements, an efferent motor response is
used to adjust hand movements as needed. Amputees
with conventional prostheses lose the ability to feel
when or how an object is being grasped and thus
cannot adequately modulate their prosthetic hand
movements based on natural sensory stimulation.
Replacement of this crucial loop starts with sensors
that can detect various stimuli from the surrounding
environment and physical world. From the use of basic
piezoresistive elements to advanced biomimetic
implementations, scientists have been exploring how to
best mimic and replace subdermal receptors for im-
proved grasping control in prostheses.
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Current tactile sensors harness the increased pres-
sure sensitivity and high-fidelity signal resolution to
allow for the classification and discrimination of sur-
face textures. This is done through an interdisciplinary
application of digital signal and waveform processing
as well as statistical and machine learning techniques.
This texture information is still not recognizable di-
rectly by the nervous system. It is therefore of high
interest to further realize neuromorphic encoding to
properly package material surface characteristics into a
language that the peripheral nervous system can per-
ceive and central nervous system can comprehend.44

To reiterate, after a given sensor detects its respec-
tive percept, the generated signals will be processed
and relayed to the user. Implanted electrodes can
interface directly with intact afferent neurons, mim-
icking stimuli that would be perceived as sensory
stimulations from the lost limb, creating phantom limb
stimulation, or that can otherwise be used to relearn
percepts in order to evoke sensory replacement. Non-
invasive extra-dermal systems have also been devel-
oped to provide sensory replacement.23 In addition,
surface electrode systems have been used to stimulate
the phantom hand rather than just replacing lost sen-
sations with new ones imparted on the residual limb.3

This article aims to provide a comprehensive review
of current technologies and new developments of smart
prostheses focused on the last 5 years. We intend to
confer a broad overview of essential concepts in tactile
sensation, texture recognition, and sensory feedback
strategies that have been either used in smart pros-
theses or have significant potential for translational
applications through their intended design.

MATERIALS AND METHODS

The PubMed and Engineering Village databases
were used to search for studies involving the develop-
ment and testing of novel prosthetic sensors, signal
processing techniques for texture recognition, and
sensory stimulation techniques for neural prostheses.
Included in the primary research papers were 13
studies regarding to prosthetic sensors, 14 on texture
recognition signal processing in prostheses, and 27 on
sensory stimulation techniques. An emphasis on stud-
ies from the last 5 years was made, with earlier studies
included to show foundational aspects of current de-
signs and concepts. The literature searches and data
collection were completed by a group of seven inde-
pendent reviewers. First readings were divided topi-
cally for individuals and screened for use in the review,
which were then cross-referenced by the remaining
reviewers.

PROSTHETIC SENSORS

Prosthetic sensors are used to detect external stimuli
such as force and pressure at the fingertips of pros-
theses. Common electronic components that detect
force and transduce the information directly to elec-
trical signals are the most apparent and available
solutions. These synthetic sensors are often adapted
and modified to allow for more specificity and sensi-
tivity at the range that would be common for human
interaction. Custom sensors that are designed based on
biological components of the hand are referred to as
biomimetic sensors.

Synthetic Sensors

Synthetic sensors detect contact forces by measuring
internal changes in resistance, capacitance, or induc-
tance due to an externally applied force. The sensitivity
and working range of these sensors can depend on
which method of measuring the applied force is used.
However, the working range can be improved by
modifying the contact surface with more compressive
materials such as synthetic polymers. While synthetic
sensors aim to replace lost sensory information, the
design strategy is not inspired by the lost biological
skin or afferent fibers. Instead, this group of sensors
leverages the availability and functionality of common
electrical components that are manufactured on an
industrial scale.

Resistive sensors measure internal changes in resis-
tance due to an externally applied force, typically
resulting in the temporary physical deformation of the
sensor before returning to its passive state when no
loading force is applied. Resistive sensors have been
used to detect the normal force, shear force, lateral
strain, and bending strain through the conversion of
such mechanical changes into an electrical resis-
tance.8,12,31,38,39,48,55,63,65,69,73,76,81 Resistance changes
can be measured through Micro-Electro-Mechanical
Systems (MEMS), strain gauges, or fluid-based designs
that incorporate piezoresistive elements. Certainly,
sensors that are more useful for prostheses are those
which are more sensitive to a range of low-impact
forces that would typically be experienced at one’s
fingertips. Therefore, custom sensors have been
developed. One highly sensitive sensor design com-
prised of three different elastomers: (1) 30 lm strain
gauge made from carbon-black-doped Polydimethyl-
siloxane (PDMS), (2) interconnect using carbon-nan-
otube-doped PDMS, and (3) insulating PDMS matrix
substrate that resulted in a sensor with a Young’s
modulus of 244 kPa, which is a similar stiffness to
skin.38 The use of a Wheatstone bridge circuit to
measure the resistance changes as well as the serpentine
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implementation (Fig. 1a) of the elastomer components
helped create a more sensitive sensor. Another syn-
thetic resistive sensor used two interlocking arrays of
polyurethane-based nanofibers coated with platinum
to measure nanoscale deformations (Fig. 1b).38,48

Mechanical loads such as pressure, shear, and torsion
forces were extrapolated and able to be distinguished
due to the two interlocked layers of the nano-hair
structure. Highly-oriented carbon nanotube (CNT) fi-
bers have been used to create strain gauge sensors to
detect uniformly distributed stress.55 The CNT sensors
provided high sensitivity, fast response times, and were
durable for use in motion detection systems.

Conductive fluids have also been used on other
custom-built resistive sensors where mechanical load
causes changes in resistance through fluid displace-
ment. A rigid core with outward-facing electrodes can
be surrounded by a compressive sheath with conduc-
tive particles, creating a sensor that responds to
applied forces by measuring impedance changes im-
posed by the altered fluid path. A solution of aqueous
NaCl at 0.75 g L21 is poorly conductive, but allows for
a useful detection of forces from 0.01 to 40 N by cre-
ating an impedance range of 5–1000 kX when imple-
mented along with a linearly grooved external
surface.69

Another sensor measures pressure and shear forces
independently using an elastomer with a central
chamber filled with eGalin, a liquid-metal alloy. A
central chamber is linked to two reservoirs through
microchannels. Deformation of the elastomer through
mechanical load created fluid movement, which could
be measured by using changes in impedance.
Depending on the direction of fluid movement, direct
pressure (force) vs. sliding contact (shear force) could
reliably be distinguished.73

Capacitive sensors that measure changes in capaci-
tive coupling across materials have been used in de-
signs that allow for pressure detection, shear force
sensing, and texture recognition.43,44 Polymers such as
PDMS have been used in mesa micro-structures to
achieve flexible and sensitive sensors.27,39,81 To in-
crease capacitance sensitivity, the PDMS dielectric
layer can incorporate different micro-structures such
as pyramids and v-shaped grooves (Fig. 1c). One sen-
sor used two conductive plates composed of flexible
polyethylene terephthalate (PET) substrate embedded
with copper electrodes.27 For texture recognition, a
capacitive sensor was designed using a linear array of
MEMS sensors in two-layers. The sensor array con-
sisted of an upper diaphragm with highly doped single
crystal silicon, placed above a lower highly doped sil-

FIGURE 1. Representations of the different synthetic sensors: (a) serpentine and (b) nanofiber elements of strain gauges in
resistive sensors,38 (c) pyramid microstructures in the PDMS layer to create a more sensitive capacitive sensor,27 (d) pore
membrane in a piezoelectric sensor to create artificial ion channels,74 (e) inductor in an inductive sensor to create digital-frequency
signals,70 (f) optical waveguides in optical sensors that can be embedded in prosthesis.78 Red arrows indicate the directions of
deformation that the sensors detect.
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icon electrode, separated by an air cavity.43,44 In
response to an applied force, the deformation of the
diaphragm causes the capacitance to change.

Piezoelectric materials that naturally transfer
mechanical stress into an electrical potential are an-
other common sensing element. Piezoelectric materials
such as polyvinylidene fluoride (PVDF) have fast and
accurate responses to high-frequency vibrations
(Fig. 1d). One simple piezoelectric sensor embedded a
PVDF film bonded with electrodes in an elastomer for
advanced prosthetic limbs. The bio-inspired tactile
sensor converts the sensor response into spike trains
using a spiking neuron model in order to simulate
mechanoreceptors in the skin.74

Another more complex sensor combines a piezo-
electric film with an artificial ion channel composed of
a double-layered polyaniline (PANI) solution split by a
porous PCTE membrane and by a gold-coated PVDF
film on top of an AL/C electrode.16 When pressure is
applied to the PVDF, a voltage is generated. Within
the PANI, this voltage induces a charge density and
electrical potential. The voltage change in the PVDF
film is large and quick, whereas the voltage at the
PANI interface is smaller and sustained for the dura-
tion of contact with a surface. These voltages were
converted to frequency signals via a voltage-controlled
oscillator.

Field-effect transistors detect mechanical deforma-
tion through its effect on the electric field within the
device, which changes the flow of charge in the semi-
conductor channel.32,76 Organic field-effect transistors
(OFETs) in tactile sensors use organic semiconductor
channels such as carbon nanotubes, conductive poly-
mers, graphene, and metallic nanowires.70 One such
sensor was developed by integrating micro-structured
PDMS films into OFETs as the dielectric layer.41 Mi-
cro-structured PDMS films yielded higher sensitivity to
pressure and faster response times to pressure release
when compared to unstructured film. These PDMS
films enable more direct measure of pressure and allow
for greater sensitivity that also reliably mimics the level
needed for prostheses. By modifying the shape of the
PDMS structures, such as pyramidal-like structures, a
higher sensitivity and pressure range can also be
achieved.

Inductive sensors detect the applied load as a
modulation of the mutual inductance of a magnetic
field between two coils. These sensors tend to be large
and complex, resulting in lower reliability.39,65 A tactile
sensor was developed by embedding a polymer mem-
brane containing magnetic particles above an inductive
magnetic sensor (Fig. 1e).70 The sensor was con-
structed of a Cu coil wrapped around a Co-based
amorphous wire, which is a type of giant magneto-
impedance material chosen for its sensitivity. To allow

for easy deformation of the membrane due to pressure,
the polymer membrane was placed in an air gap, which
helps the magnetic sensor detect changes in the mag-
netic field. The inductive magnetic sensor formed part
of an LC circuit, so the changes in magnetic field were
directly transduced into digital signals, manifesting as
changes in oscillation frequency.

Optical sensors have been used for tactile signal
transduction, measuring optical variations across semi-
transparent media due to physical deformation upon
contact and pressure.20,39,65,76,81 Optical sensors have a
large form factor, yet maintain high sensitivity and
resolution, while being immune to electromagnetic
interference from nearby sources.20,65,81 A prosthetic
finger was developed using a sensor with a looped
optical waveguide, which is the combination of an
optically-focused light-emitting diode (LED) on one
end and a sensing photodiode to sense light intensity
on the other end (Fig. 1f).78 The changes in light
intensity were proportional to the elongation of the
finger. These sensors are subject to less hysteresis and
time response than other types of devices due to the
immediate response of light intensity to strain in the
device.

Sensors that utilize the triboelectric effect, which is
the induction of electrical potential through moving
specific materials across one another or through sep-
aration, present the advantage of not requiring an
external power source. One example of the triboelectric
effect is static electricity. Using this triboelectric prin-
ciple, a self-powered, flexible tactile sensor was devel-
oped that generates a voltage response from physical
contact.79 Contact electrification is provided by a
nano-wire layer of fluorinated ethylene propylene
(FEP), which generates the electrical charges, thus
determining the sensitivity of the device. Upon contact
with an object, the electrode becomes negatively
charged. After separation, the FEP remains charged
for an extended period and generates a net electrical
potential, which can be measured as a voltage across
the electrode. When Fluorine contacts many materials,
it gains a negative charge. This causes FEP to have
very strong triboelectric properties.

Biomimetic

The design of prosthetic sensors has also been di-
rectly inspired by the biological components that are
aimed to be replaced. Prosthetic sensors should also
mimic the biological characteristics of the skin,
including signaling mechanisms,16,63,73,74 structure,8

and mechanical properties.31,73,82 The human glabrous
dermis layer contains four types of low threshold
mechanoreceptors (LTMRs), categorized into slow-
adapting (SA) and fast-adapting (FA), that measure
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mechanical stimuli (Fig. 2). Among the four LTMRs,
Merkel cells (SA1) and Ruffini endings (SA2) produce
sustained signals throughout mechanical stimulation.
This allows these receptors to measure static force and
strain from prolonged contact. Meissner corpuscles
(FA1) and Pacinian’s corpuscles (FA2) produce dy-
namic signals and are more involved in detection of
features of an object and vibration.1

Piezoresistive sensors have been used in the design
of organic prosthetic sensors that mimic the biological
signaling activity of SA and or FA mechanoreceptors,
forming a digital mechanoreceptor. The transduction
from analog sensor reading to spiking signals was
achieved either through an electronic circuit or a
software model (Fig. 3). An oscillating circuit that
produced a periodic square wave was used to encode
physical force stimuli into digital signals.63 Pyramidal
micro-structures were constructed from polyurethane
elastomers with embedded carbon nano-tubules. This
combination of piezoresistive sensors and organic
oscillators enabled varying sensor output frequencies,
which mimicked SA mechanoreceptors. Increased
sensitivity and working range of the sensor was
achieved by reducing the effective Young’s modulus
and concentrating the electric field.

Another sensor that was designed to mimicked the
SA signaling mechanism uses conductive microfluids
encapsulated in polymer film to form a hemisphere.73

The volume of fluid and diameter of the hemisphere
could be adjusted to control the sensitivity of this fluid-
based resistive sensor. Normal forces and shear forces
were detected by measuring the concurrent resistance
changes, which showed a similar profile to SA skin

receptors. The activity of FA receptors has been
reproduced by a sensor design that used PVDF as the
conductive piezoelectric material and PDMS as the
coating.74 Continuous electrical signals were converted
into spike trains with variable frequency, based on a
neuron model that describes the current change across
FA mechanoreceptors. This conversion from voltage
output of the sensor to a spike train mimicked FA
receptor response (Figs. 3d and 3f).

More recently in 2018, a self-powered piezoelectric
sensor achieved properties of both SA and FA
mechanoreceptors. To realize both SA and FA
responses, this sensor needs to generate two types of
voltage outputs, one corresponding to SA and the
other FA, in response to pressure.16 The sensor con-
sists of a piezoelectric film made with gold and PVDF
as well as an artificial ion channel made with an elec-
trolyte (PANI solution) and a pore membrane. Ap-
plied pressure to the sensor deforms the piezoelectric
film, allowing for the encoding of an FA response. As
contact is maintained, ion movement through the
electrolyte in the membrane occurs, creating a sus-
tained SA response. The sensor was demonstrated to
identify mechanical stress and detect grasping events
such as slipping objects.

Prosthetic sensors have also been designed based on
the surface structure of fingerprints. A flexible tactile
sensor has been developed with microscale pyramids
on both the outer layer in contact with the object
surface and between the inner layers of the sensing
element (Fig. 4).8 This sensor, with the outer pyramid
layer inspired by shaped grooves of fingerprints, was
made of single-walled carbon nanotubes (SWNTs),

FIGURE 2. Schematics of human glabrous skin mechanoreceptors and firing patterns. (a) Glabrous skin contains four types of
LTMRs: FA1, FA2, SA1, and SA2. (b) In response to a tactile stimulus, the four LTMRs show different firing patterns.
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polyethylene, and PDMS. Two inner layers of SWNT
formed pyramids that were organized into an inter-
locked layout, allowing for the sensor to detect changes
in both normal and shear forces. The use of pyramidal
structures allowed for high sensitivity, as the tip of the

pyramid deforms more easily upon applied force than
a smooth surface with more direct contact and rigidity.

Biomimetic sensors have also sought to copy the
compressive nature of skin along with its ability to
stretch. Most tactile sensors described so far have used
stretchable materials such as elastomers to mimic basic
viscoelastic properties of the skin surface. However,
the sensing elements themselves were underneath this
skin layer. Flexible sensors can be manufactured to
accommodate skin-like mechanical properties across
the sensor itself. Silicon-based circuits can be pre-
strained to provide sustained force detection in thin,
deformable layers while under strain due to applied
forces.29 The same pre-straining strategy was applied
to develop a skin-mimicking, stretchable sensor using
silicon nano-ribbons covering an entire artificial hand.
Local curvature of the ribbon is site-specific and can be
calibrated to conform with the curvatures of the
prosthetic hand, thus corresponding to the natural
elasticity of the hand region. A greater curvature cor-
responds to heightened elasticity and lowers piezore-
sistive sensitivity.31

FIGURE 3. Schematic of sensor responses that mimic mechanoreceptor signaling mechanisms. Given an example of (a) applied
pressure change with time and (b) the corresponding sensor voltage response with pressure, (c) a sensor that mimics the SA
signaling mechanism shows a profile that gradually changes with applied pressure. (d) A sensor that mimics the FA signaling
mechanism shows voltage changes only when pressure changes. (e, f) Converted to spike trains, the SA type sensor shows firing
pattern similar to SA mechanoreceptors and the FA type sensor shows firing pattern similar to FA mechanoreceptors.

FIGURE 4. Structural layout of sensors (right) that mimic
different parts of the skin. Outer pyramids mimic grooves on
the skin surface and interlocking pyramids mimic the
connection between epidermis and dermis.
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The extent of biomimicry in prosthetics is not lim-
ited to mechanical properties and sensory end organs.
The premise of wound healing has also been explored
in terms of prosthesis healing. Made of a dynamic,
covalent thermoset doped with silver nanoparticles, a
re-healable sensor was able to reform its original
structure after external damage due to an abrasive cut.
Application of a polymerization compound solution
and heat allowed for covalent bond exchange reactions
at the wound site, enabling the healing of the sensor
surface.82 Although the capacitance profile of the
original, undamaged sensor was not completely re-
tained after the healing process, it did allow for similar
object detection.

TEXTURE RECOGNITION

One of the major decoding goals of raw prosthetic
sensor output is for the texture of objects to be accu-
rately identified. The identification of physical prop-
erties of objects improves grasping tasks by moving
from an all or nothing grasping approach with full
power, to a smoother and more continuous control of
grasping forces based on the given system feedback.
Object stiffness and texture can be used to improve the
breadth of sensations replaced for amputees while
improving grasping tasks.

Many of the currently available texture sensing
technologies and their performances at detecting a
variety of surfaces are discussed below. Additionally,
the use of classification algorithms to connect the sig-
nals to actual surfaces will briefly be discussed, as it
serves as the final performance metric to understand
the effective sensitivity of a tactile sensor. The sensor
technology described above has been focused on
increasing signal sensitivity for accurate detection of
texture information. Texture detection studies use
different types of tactile sensors to (a) scan surfaces in
the temporal domain, (b) process temporal signals to
determine characteristic patterns of surfaces, and (c)
utilize classification algorithms to correctly identify
and categorize textures. A comparison of recent studies
in texture sensor and recognition is reported in Ta-
ble 1.

Tactile Texture Sensing

Piezoresistive (PR) sensors are commonly used in
tactile sensors for texture detection.8,14,15,30,35 MEMS
have wide applications for creating highly sensitive
tactile sensors that convert mechanical deformations
into electrical resistance through multi-axial piezore-
sistive sensors. Deflection of these resistors, when
scanning over surfaces, can define micro-structural

differences as the sensor moves across the surface that
are indicative of specific texture features. This method
can detect pressure changes of fine weave patterns of
paper textures.30,35 Other MEMS-based capacitance
sensors with a linear array of four tactile sensors were
able to detect surface patterns as small as 200 lm and
were capable of obtaining characteristic frequencies
that encode texture differences between smooth PDMS
surfaces and nylon. Distinct characteristic signals
could be detected for each texture after the multi-array
sensor signals were fast Fourier transformed, exhibit-
ing the capability of multi-array sensor configuration
to capture both temporal and spatial information. This
would enhance the potential for texture pattern
detection significantly.44

Novel fingerprint-inspired SWNTs/PDMS com-
posite piezoresistive sensors are flexible, able to discern
a useful range of pressures during scanning movements
(45–550 Pa), and can detect changes in resistance from
0 to 2500 Pa. A double-sided, double-layered, inter-
locked pyramidal SWNT micro-structures can detect
even minute changes in shear force. Even fine periodic
texture patterns with 15 lm interval spacings were
detected with discernable output signal changes. This
feat highlights the SWNT’s high recovery rate after
shear force, attributed to the pyramidal microstructure
design. Minute differences in various fabric textures
could easily be identified based on their output sig-
nals.8

A composite of graphene flakes and polyurethane
sponges have been integrated for use as an improved
conductive graphene piezoresistive sensor.15 The
sponge material is slow to return to its original shape
after deformation. Despite this extended time depen-
dency, the signal acquisition still maintained low en-
ough noise artifacts vs. the actual signal to distinguish
characteristic FFT peaks. The graphene composite
allowed for distinguishable FFT characteristic signals
for ridge (grooved surface structures) detection with a
minimum of 200 lm separation on fabricated PET
material.14

Piezoelectric (PE) sensors using PVDF have exhib-
ited sensitivity to external input that results in distin-
guishable voltage signals. One of the main
characteristics of PVDF is the ability to mix other
chemical compounds into the structure of PVDF. The
introduction of impurities dictates the ‘‘roughness’’ of
the PVDF film and determines the piezoelectric sensi-
tivity to external surfaces. A PVDF film was used to
determine the differences in different weave fabrics.
Detection and classification of different surface types
were done by extracting features from the output fre-
quency and classified through an unsupervised k-
means clustering algorithm.59
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Flexible two-layered PVDF sensors showed en-
hanced sensitivity and higher resolution (0.43 lm),
with capabilities to differentiate between texture sig-
nals of polished metal surfaces. The perpendicular
orientation of the two PVDF films allowed for
increased signal acquisition and the ability to sense
vibrational differences between the two sensors during
scanning. Despite the higher sensitivity PVDF sensor
arrangement and the use of various machine learning
algorithms, the accuracy of classifying polished metal
surfaces was much lower than that of fabric detec-
tion.59 This could be attributed to the increased innate
difficulty of sensing the minute sandpaper gratings

between polished metals, which would even prove to be
challenging for a human finger tip.51,52

Additionally, a multi-modal sensor array of multi-
ple gauge sensors and PVDFs was able to identify the
differences between various materials such as carpet,
tile, wood, vinyl surfaces, and fabrics based on ex-
tracted features from texture information. Resistance
changes were captured by strain gauges and electric
potential changes were captured by PVDFs in response
to strain and pressure inputs. Although this classifi-
cation task was simpler, the output signals were pre-
processed and applied to more sophisticated learning
algorithms (Decision trees, Naı̈ve Bayes, boosted tree).

TABLE 1. Comparison of texture recognition techniques in recent works.

Ref. Sensors Materials Textures detected Algorithms/protocols Accuracy Res.

30,35 PR NiCr, Silicon MEMS,

Strain Gauge

10 different papers with varying textures

patterns, 5 Texture Patterns

Multilayer perceptron, maxi-

mum likelihood

53–80% 830

lm

A combination of MEMS and strain gauges were used to make sensors that can detect roughness events from various types of paper textures

with a minimum periodic weave pattern of 830 lm at a scanning velocity of 7.6 and 3.8 cm s21. For the task of classifying 10 differently

textured patterns, the accuracy from capacitance signal derived texture features were between 53 and 67%. For the detection of 5 texture

patterns, the accuracy greatly improved to 60–80%

8 PR SWNTs/ PDMS Silk fabrics, braille FFT 15

lm

The single-walled carbon nanotube with cross-linked micro pyramidal flexible sensor array exhibits extreme sensitivity to pressure and can

detect texture surfaces by detecting the sheer force changes through surface interactions. Output signals were Fast Fourier transformed

and have exhibited significant signal structural differences even in silk fabric and braille textures as small as 15 lm 9 15 lm

14,15 PR Graphene Sponge PET flexible ridges FFT 200

lm

Two single-layered graphene sheets are placed parallel to each other on either side a polyurethane sponge with high sensitivity pressures

detectability (2 0.24–0.039 kPa21) can detect shear force changes between the two graphene layers in conjunction with the properties of

graphene itself. This application of PR can detect ridge spacing on PET as close as 200 lm. Although the FFT signals are noisy due to the

slow recovery time of a sponge material, characteristic peaks can still be detected that align with each corresponding material gap width

59 PE PVDF 5 types of fabrics including silk, cotton, and

wool

RBF, k-means clustering 96–

100%

60

lm

A single layer of PVDF with roughness < 15 lm was used to quantify textures of different types of fabrics with periodically patterned weaves

as small as 60 lm. The frequency output from the PVDF sensor from each of the different fabric was used to classify the frequency

extracted features from each of the 5 fabrics by using a neural network implementation of K-means clustering algorithm (RBF). The high

accuracy signifies that the signals that the features were derived from were sufficiently different for each fabric but may mean that since the

fabrics were significantly different, the classification task itself was too simple.

52 PE 2-layer PVDF 15 graded polished metals KNN, SVM, ELM 57–73% 0.44

lm

51 PE 2-layer PVDF 8 graded ridged textures DWT, KNN, SVM, ELM 80–97% 0.04

lm

Two PVDF films were placed in a perpendicular arrangement to allow for increased signal acquisition (in two axes) and to more adequately

detect vibrational differences during the scanning task over surfaces of metals polished with different sandpaper gratings. Similar to58

signal pre-processing and statistical feature extraction was performed but due to the much more difficult task of determining the degree of

polish of metals, the accuracy of the classification tasks using KNN, SVM, and ELM were much lower than classifying fabrics

26 PE Multi-strain gauge,

PVDFS

8 surfaces: carpets (2), sponge, tiles (2), vi-

nyl, wood, fabric

Decision Trees (Naı̈ve

Bayes, boosted tree)

80–

100%

Multi-strain gauges and PVDFs were laid between two silicon layers. The strain gauges serve as slow-adapting mechanoreceptors that

provide resistance change signals when under strain. PVDFs act as fast-adapting mechanoreceptors that provide electric charge response

to pressure. The number of PVDF and strain gauges ranged from 2 to 8 and were randomly placed between iterations. Through the

inclusion of a majority voting algorithm, classification accuracies were improved when applied to the decision tree algorithms

44 C Silicon MEMS Smooth PDMS surface, polycotton, nylon FFT 200

lm

Signals from a linear array of 4 MEMS capacitance sensors were used to discern the course to fine texture differences of periodic gratings in

PDMS surfaces and fabrics down to 200 lm. The use of a multiarray of sensors allowed for both the capture of temporal and spatial

information shown through the ability to capture differences in the fast Fourier transformed signal peak characteristics

Ref. References, Res. Resolution, PR piezoresistive, PE piezoelectric, C capacitive, RBF radial basis function networks.
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When combined with their voting algorithm, the clas-
sification scheme accuracy reached 80–100%.26

Signal Processing and Classification

Signal processing and feature extraction algorithms
are crucial to properly decomposing and translating
tactile sensor signals into useable texture features.
General statistical algorithms and machine learning
techniques have been applied to the problem of clas-
sifying textures and surfaces. The Fast Fourier
Transform (FFT) and Discrete Wavelet Transform
(DWT) are leading techniques for preprocessing and
simplifying signal output from sensors. Statistical and
learning algorithms including decision trees (DT),
support vector machines (SVM), extreme learning
machines (ELM), gradient boosting machines (GBM),
maximum likelihood estimations (MLE), k-means
clustering (KM), and k nearest neighbors (KNN) are
used to categorize and identify textures.

The FFT is most commonly used for temporal sig-
nals from sensors. The FFT identifies characteristic
surface features, including ridges and depressions, by
correlating the frequency of pressure changes across a
tactile sensor as it is scanned across an uneven sur-
face.8,14,15,26,44,52,59,75 The FFT captures the promi-
nence of different frequencies of pressure changes,
which can be directly used for surface classification or
as a subset of features in machine learning strate-
gies.8,14,15,51

Wavelet filters can also be applied in signal pro-
cessing of raw signals, referred to as discrete wavelet
transforms (DWT), creating high-pass and low-pass
filters which can retain the original frequency and
temporal information. DWT results can then be used
for feature extraction for machine learning strategies,
similarly to FFT. In practice, DWT is often only used
when FFT results fail to produce satisfactory dis-
crimination of surfaces.28

Classical statistical features of the raw signal have
also been used to characterize surfaces and provide
engineered features for texture recognition machine
learning algorithms. Useful statistical features include
variance, standard deviation, power, kurtosis, mean,
median, max, mode, and range.22,30 A combination of
features from FFT, DWT, statistical measures, and
raw temporal signals provide a more comprehensive
description of surfaces. Providing a greater quantity of
descriptive data often improves the accuracy of ma-
chine learning strategies. Signal data can also be sep-
arated based on temporal and frequency measures in
an attempt to retain features for each domain space.51

Various feature extraction techniques and machine
learning algorithms have been used in attempts to
reliably identify textures (Table 1). Supervised ma-

chine learning algorithms with labelled training data
(DT, SVM, ELM, GBM) have dominated the litera-
ture (Table 1). Even those that would typically be
unsupervised methods (KM, KNN, MLE) are applied
with integrated label information to perform a super-
vised classification task (Table 1).

The performance of each of these algorithms men-
tioned in the literature includes area under the curve of
the receiver operating curve (AUROC), sensitivity,
specificity, and accuracy. Accuracy is often used as the
measure of success for a machine learning application,
but it does not incorporate the possibility of overfitting
to the data or whether the model has used the expected
features. Low accuracies can also be indicative of
particularly difficult classification tasks. Identifying the
difference between metals polished with different
sandpaper grits is more difficult than identifying wool
vs. metal or wood.30,75

Recent literature highlights the successful ability of
tactile texture sensors capable of detecting micro-
structures (> 0.4 lm) and displaying extreme sensi-
tivity to imperceptible pressure changes during scan-
ning51 (Table 1). The raw electrical signals have been
shown to be characteristic of specific texture surfaces
with preliminary classification tasks showing accept-
able discrimination among tested materials (53–100%)
(Table 1). While being able to differentiate micro-
structures may not be necessary for prostheses, these
studies show the ability of well-designed machine
learning strategies to directly use raw signal data rather
than engineered features.

Advances in computational resources and applied
algorithms have allowed for the high sampling rates
and real-time processing needed for responsive, closed-
loop feedback in experimental prostheses. Processing
sensor signals during object grasping tasks and
encoding for slip detection has been used to provide
stimulation feedback via cuff and intraneural elec-
trodes. The stimulation feedback enhances efficacy of
grasping and object manipulation tasks while using a
myoelectric prosthesis, controlled by muscualar flexion
in the residual limb.80 Enhancing closed-loop control
of prostheses, from stimulation to myoelectric control
and then adjusting the stimulation with processed
sensor signals, has been an active goal in experimental
prosthesis research.

Closed-loop prosthesis control may be further en-
hanced with automatic grasping force and grip type
modulation by the prosthesis itself. Past prostheses
have used automatic full-force grapsing without sensor
feedback, making it difficult to grasp and manipulate a
more complete variety of objects. Using processed
signals from prostheses allows for a secondary closed-
loop system within the prosthesis itself to modulate
hand positions and grasping forces.77 Assistive, semi-
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autonomous prosthesis control can also aid in
bimanual object manipulation for patients with an
intact arm. Detection of bimanual tasks requires
wearable sensors on the healthy arm, but allows for
bimanual task to be completed more quickly and with
less cognitive demand.68

Other Applications of Texture Recognition Technologies

Active progress in virtual reality and human–com-
puter interface, with respect to texture recognition, has
included the use of texture databases, object shape and
surface recognition, and haptics to enhance the user’s
perception of the virtual space. These advances could
be directly applied for the benefit of prostheses users in
order to reestablish a sense of touch while interacting
and perceiving their environment.

In order to convey the similarity and differences of
textures, multidimensional scaling (MDS) is used to
characterize textures on the axes such as patterns, level,
and dynamic friction.45 This allows for the creation of
well-differentiated textures to visualize and interact
with in the virtual space. To render parameters for
texture perception, an open-source framework,
Chai3D, is used for computer haptics, active visual-
ization, and interactive real-time simulation (www.cha
i3d.org).45

Model-based texture recognition systems use an
image of an object to classify the surface texture.37 The
Columbia-Utrecht (CURet) database contains 61 real-
world 3D texture surfaces that has been used to test the
ability of algorithms and texture perception methods
(http://www.cs.columbia.edu/CAVE/software/curet/
).19 High recognition rates of CURet’s surface textures
is possible by combining feature grouping and
dimensionality reduction of the object’s image.19 An-
other study compared direct image feature prediction
and image prediction via surface feature prediction by
testing them over 35 surface textures.37 Image predic-
tion via surface feature prediction infers the surface
shape of a virtual object followed by the intensities of
the features on that surface. This method produced a
larger error in recognizing surface textures but was
better at predicting the shape. These texture prediction
algorithms can be adapted for use in prosthesis texture
recognition.

SENSORY STIMULATION

The information gathered from prosthetic sensors is
encoded and used to stimulate afferent nerve fibers
directly through implanted subdermal electrodes or
through less invasive measures using extra-dermal
stimulation approaches. Major developments in skin-

surface sensory substitution techniques and implanted
nerve electrode designs have been made in the past 5
years. As such, we focus on them in the report here.

Extra-dermal Stimulation

Activation of the sensory system can be achieved
through non-invasive techniques that stimulate the
skin surface or even directly stimulate the underlying
afferent nerves. The end-results are unique in the
evoked perception. While skin surface stimulation will
be felt locally, targeting the underlying afferent neu-
rons that once innervated with the lost hand or finger
can produce sensations of the phantom limb being
directly stimulated. When non-invasively stimulating
the skin, percepts could be learned and correlated to
different environmental cues, such as vibration on the
upper arm upon contact of the prosthetic fingers with
an object, through the process of sensory substitution.
Alternatively, extra-dermal stimulators can be used to
non-invasively target the underlying afferent fibers
below the skin, providing sensation to afferent fibers
that were once connected to the lost limb. When these
nerve fibers are stimulated in this manner, sensations
are perceived to originate from the hand or lost limb,
even though the electrodes are placed elsewhere
(Fig. 5).23 The activation of these afferent fibers is re-
ferred to as phantom limb stimulation and is often
used to highlight this difference in neuronal targeting.
These two strategies can be classified as extra-dermal
since the stimulators are located on the surface of the
skin rather than being surgically implanted along
peripheral axons, which is characterized as subdermal
stimulation.

FIGURE 5. Recruitment of sensory neurons from the lost
limb can result in phantom limb stimulation for more natural
sensory replacement. Localized stimulation recruits local
sensory neurons, resulting in sensory substitution, which
can be used to relearn sensory associations.
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Electro-tactile feedback techniques use surface
electrodes to indirectly stimulate the afferent sensory
nerves under the skin. The electrical signal is intro-
duced at the skin surface which can be directly sensed
on the skin for sensory replacement or can alterna-
tively be used to target the underlying axons that
represent the phantom limb. Extra-dermal electro-
tactile stimulation is often referred to as transcuta-
neous electrical nerve stimulation (TENS). Sensory
substitution has been achieved with an electrode array
consisting of four channels that are placed along the
medial center of the upper arm. The electrodes can
deliver both pressure and slip feedback to the subject
by changing the frequency and amplitude of the cur-
rent and through cyclic activation patterns. When
testing the efficacy of using slip, pressure, and visual
feedback, it was found that slip feedback was the most
useful for maintaining a grasping force while a com-
bination of slip and pressure feedback allowed for the
most rapid transition from rest to grasping at the
necessary force.71

Sensory substitution can also be used for more
severe injuries where sensory perception along the en-
tire arm is completely lost. Electrical transcutaneous
stimulation along the back of the neck could particu-
larly benefit patients with certain spinal cord injuries.
The encoding of tactile grip force and hand aperture
through electrical stimulation along the neck with four
discrete contact sites have been used to provide force
and proprioceptive information.3 The ability to accu-
rately determine the weight and size of an object
increased with training over 5 days, but on average,
objects were properly identified only 49% of the time.
It is expected that further training would improve
object discrimination, as a machine learning model was
able to classify the objects with 100% accuracy when
using the stimulation parameters as training features.3

Still, more extensive surface electrode patterns have
been designed, including a 16-point contact system that
wraps around the residual limb circumferentially.66 The
increased number of electrodes allows for more stimu-
lation contacts and a greater number of associated
percepts. However, there is a limit to the useful density
of electrodes for sensory replacement or phantom limb
stimulation. If two neighboring electrodes are too close
to be differentiated, then they won’t be useful as sepa-
rate stimulators. By using circumferentially placed
electrodes, the spacing of electrodes is more distin-
guishable by users than denser grid patterns.66

External transcutaneous stimulators can be used to
target the median and ulnar nerves. Rather than being
perceived as local electrical stimulation at the electrode
sights, subjects feel the sensation along their hand with
finger-level discrimination. The phantom hand is a
concept used to describe the ability of an amputee to

perceive sensations as originating from the lost hand.
A 2 9 8 electrode grid placed below the bicep, along
the medial side of the upper arm, has been used to
stimulate these afferent nerve fibers, providing per-
ceived sensations on individual fingers by altering the
active electrode pairs on the upper arm.58

Artificial activation of the phantom hand through
transcutaneous electrical nerve stimulation can also be
used to reinstate other percepts beyond finger-level
contact discrimination or broad grasping forces.
Stimulations relating to innocuous pressure needed for
grasping have been modulated to combine information
regarding the sharpness of objects. The sharpness of
objects was realized perceptually as varying levels of
pain for the amputee subject. To provide these sensa-
tions at the phantom hand, neuromorphic spiking of
the electrical signal is needed. By mimicking known
spiking patterns of healthy afferent fibers in response
to different stimuli, the amputee subject was also able
to distinguish flat, rounded, and sharply pointed ob-
jects from one another based on the sharpness of the
objects with high accuracy.47

Even with non-invasive, transcutaneous electrical
stimulation techniques, potential complications can
arise. Stimulation parameters (current, voltage, wave-
form) must be appropriately selected to reliability illicit
sensation while minimizing spreading of the stimula-
tion and preventing pain.46,47,67 Electrode density must
also be sufficient to stimulate the target region without
activating nearby off-target neurons. Peripheral sen-
sory and motor pathways in the residual limb need to
be identified and distinguished well enough to deliver
specific limb stimulation, particularly with myoelectric
prostheses that use EMG to control grasping.67 The
task is further complicated by changes in the peripheral
nervous systems due to original tissue damage followed
by endogenous healing processes of the residual limb,
as well as potential plasticity changes in the central
nervous system from altered or absence of signaling.67

Strategies other than electrical stimulation have also
been explored for sensory substitution strategies. Vi-
bro-tactile stimulation methods use a haptic motor on
the skin surface to provide vibrational sensation.10

Similar to typical electrical sensory substitution, vibro-
tactile stimulation is most effective when localized to
the bicep region. Desensitization to prolonged stimu-
lation is also a concern for vibro-tactile stimulation.
After a minute of stimulation, subjects usually lose the
ability to recognize the presence of vibrational stimu-
lation. For linearly increasing vibration intensity with
increasing grasping force, vibrotactile feedback is most
useful at intermediate grasping forces. When minimal
grasping force or full grip strength is needed, vibra-
tional stimulation does not improve upon the intended
grip strength.10
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Since desensitization to prolonged vibro-tactile
stimulation is of concern, the strategy of encoding for
contact onset and release of objects can be more suc-
cessful than encoding for prolonged contact. By using
this event-driven approach for contact, picking up,
setting down, and releasing an object, amputee subjects
reported improved performance when grasping and
manipulating fragile objects. Minimal training was
needed, as most subjects reported grasping improve-
ment within a week, while some showed improvement
immediately upon introduction of the event-driven
vibrotactile stimulation.17 The design of the tested
system, called the Discrete Event-driven Sensory
feedback Control (DESC) system, was such that it
could be used with an existing prosthesis. A flexible
thimble with embedded sensors was placed over the
forefinger and thumb and connected to two vibro-
tactile stimulators located on the upper arm near the
bicep of amputee subject. In grasping trials with a
fragile block, the use of DESC feedback helped prevent
subjects from breaking the boxes due to excessive
compression (> 10 N).17

Mechano-tactile sensory stimulation involves the
use of physical pressure or tangential stretch mecha-
nisms that resemble the sensation of applied force.2

Passive, linear skin stretch methods use simple pulley
systems attached to the prosthetic fingers and adhesive
contact pads on the residual limb to directly translate
finger flexion with a purely mechanical solution. Since
finger positioning and hand aperture are being utilized,
the subjects were provided with proprioceptive feed-
back rather than a direct grasping force. By using
mechano-tactile stretch stimulation, subjects could
reliably report stable configurations of the prosthetic
thumb, index finger, and middle finger with 88%
accuracy as well as move the prosthetic fingers into a
target grip aperture with only 11% error.2

Mechano-tactile stimulation can also be expanded
to include a localized contact force on the residual limb
in addition to tangential shear stretching. The clench-
ing upper-limb force feedback (CUFF) mechano-tac-
tile device uses an elastic belt around the upper arm to
induce pressure and stretch stimuli.9 The normal force
or pressure stimulation is applied around the entire
circumference of the arm by tightening the band.
Stretch stimulation is created by rotating the armband.
Friction between the armband and skin provides a
pulling effect. Three levels of object stiffness discrimi-
nation were achieved when relying on CUFF stimu-
lation from a prosthetic hand grasping the target
objects.9

Cable-driven and linear tactor systems have also
been used to provide mechano-tactile stimulation.57 In
these systems, the tactor is a rounded bolt that is used
to apply a normal force to the skin. Linear tactor

systems can be bulkier and more cumbersome for
users. Cable-driven systems have a lower profile, but
also take up more space along the length of the
residual limb. When using two cable-driven tactors
corresponding to the thumb and forefinger, proper
discrimination of which respective prosthetic fingers
were being stimulated was achieved. Additionally, the
grasping force used in object manipulation tasks
decreased, showing that subjects were better at recog-
nizing the adequate grasping force needed.57 Figure 6
shows the common extra-dermal stimulation strategies
discussed.

Visual feedback is another avenue that has been
explored for the potential of providing sensory stimu-
lation in upper limb prostheses.18,42 Visual feedback is
more technologically complicated to develop, but is
now more accessible with devices that have been de-
signed for general use. Using an augmented reality
display in the peripheral view, information regarding
grasping force and prosthetic hand aperture is learned
and incorporated by subjects in manipulation tasks.18

The GLIMPSE system uses the Google Glass head-
band to relay information regarding EMG signals,
hand aperture, force, and contact events with an aug-
mented reality display in the user’s peripheral vision.42

The peripheral visual feedback presented allowed for
more control in manipulation tasks that required
accurate control of grasping forces.42 This suggests
that visual feedback is another viable sensory
replacement strategy for improving upper-limb pros-
thesis control.

Using combinations of different sensory stimulation
modalities is also possible. Vibration and electrical
stimulation have been combined in the hybrid vibro-
electro-tactile (HyVE) sensory feedback system.21 Even
when stimulated in parallel, subjects are able to inde-
pendently discriminate electrical and vibrational stim-
ulations. When testing user perception discrimination
of nine different messages, which could be used for
training subjects with sensory substitution, a combi-
nation of vibro-tactile and electro-tactile stimulation
improved recognition accuracy to 72% from 29% and
44% for each individual stimulation modality,
respectively.21 This shows the possibility of increasing
the number of sensory signals that can be distinguished
without increasing the space needed on the skin sur-
face. It may be most valuable to use vibration for
event-driven signaling,17 while also using electrical
stimulation for grasping force or hand aperture.3,66,71

Extra-dermal sensory stimulation techniques are a
viable, non-invasive solution to aid in grasping tasks
with upper limb prostheses. Sensory substitution can
be achieved by replacing lost limb sensations with
alternative stimuli on the residual limb or other skin
surfaces. Purely mechanical solutions can be used to
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pull the skin surface and provide proprioceptive feed-
back regarding the prosthetic hand aperture. Haptic
motor vibration and low-voltage surface electrode
stimulation can be used to create sensory stimulation
systems with lower profiles, but require onboard cir-
cuitry. Visual feedback with augmented reality displays
in the peripheral vision can also improve object
manipulation with prostheses. Transcutaneous electri-
cal nerve stimulation (TENS) can be used to stimulate
the phantom limb by targeting the median and ulnar
nerves in the residual limb, thereby providing sensory
feedback that is perceived to originate from the lost
limb rather than directly on electrode contact site.
Perhaps the greatest benefit of these techniques is that
they require no surgery or recovery periods for pros-
thetic users; rather, these stimulation techniques can
often be directly added to existing prostheses.

Subdermal Stimulation

Another method of interfacing with the peripheral
nervous system to replace lost sensory stimulation is
more direct, requiring subcutaneous implantation of
specifically designed electrode systems.54,60,67 There are
varying levels of contact with the target nerves, the
trade-off being the extent of how invasive the system is
and the surgical procedure needed for implantation
against the level of precision and specificity that the
electrodes can achieve.60,67 Strategies for interfacing
with the central nervous system have also been studied,
including those directly stimulating the brain and
spinal cord.4 Our review will focus on strategies for
stimulating the peripheral nervous system that rely on
intact neural pathways for signal propagation of sen-
sory stimulation from the peripheral nervous system to
the central nervous system for perception. Figure 7
shows examples of the most common and novel sub-

dermal electrode designs, highlighting their unique
design characteristics.

One strategy for implanted electrodes is to surround
the targeted peripheral nerve without breaking the
outer layer of epineurium around the nerve, creating
an extra-neural electrode (Fig. 7).61 The non-pene-
trating, spiral nerve cuff electrode wraps around the
nerve twice over.13 This neural cuff electrode relies on
a polymer sheath that is engineered to naturally curl
into a cylindrical form. When curled, the electrodes
align in a circular pattern, creating a cross-section of
electrical stimulation perpendicular to the length of the
nerve. The curling of the polymer sheath allows for the
spiral nerve cuff electrode to be used with a range of
nerve sizes, stretching around larger nerves while
maintaining a secure fit. If there is considerable strain,
the nerve cuff electrode can become dislodged from the
nerve, avoiding damage but also resulting in electrode-
nerve contact loss. Due to the extra-neural nature of
the spiral nerve cuff electrode, it primarily targets
fascicles near the epineurium of the nerve. In trans-
radial amputee subjects, the spiral cuff electrode has
been used to artificially stimulate tactile sensations in
the peripheral limb, functionally allowing for the
replacement of some somatosensory feedback in the
lost limb.13

The flat interface nerve electrode (FINE) is another
extra-neural electrode design that does not penetrate
the epineurium.7,62 The FINE design is similar to the
spiral nerve electrodes, but it also imposes a mechan-
ical clamping action that physically deforms the target
nerve into a flatter cross-sectional area (Fig. 7). This
clamping action creates an altered physical separation
of the fascicles and decreases the distance from indi-
vidual electrodes to the medial fascicles. Therefore,
targeting individual fascicles, including those that are
beyond the range of the spiral nerve cuff electrodes,

FIGURE 6. Visualization of extra-dermal stimulation strategies. Stretch and compression are applied using an armband wrapped
around the circumference of the arm. The force tactor provides a more localized mechanical stimulation. Vibration and electrical
stimulation are more common and can be readily sourced.
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becomes possible.56 Two 8-channel FINE cuffs im-
planted on the median and ulnar nerves, in conjunction
with a 4-channel spiral nerve cuff electrode on the ra-
dial nerve, were used to restore phantom limb sensa-
tions of pressure, vibration, tapping, and rubbing in an
amputee.62

Split ring electrodes, previously called c-shaped
electrodes,72 contact the epineurium layer with four
protruding electrodes along the inner diameter of the
nerve-surrounding ring34 (Fig. 7). The electrode was
fabricated with layered polyimides and Au/Pt active
sites. The ring portion of the electrode is split at one

end, allowing for it to be spread apart for implantation
around a nerve and also lending itself to minor
deformation due to nerve displacement at each contact
point. The split ring electrodes have been tested for
stimulation and recording paradigms.

Intra-fascicular electrodes penetrate the epineurium
and the perineurium to directly interface with the fas-
cicles of the target nerves. The longitudinal intra-fas-
cicular electrode (LIFE) consists of a single contact
point at the end of a platinum-iridium wire or other
flexible insulated wires.64 The electrode is implanted
into the fascicle with a rigid needle sheath that is then
removed.

The distributed intra-fascicular multi-electrode
(DIME) system was engineered by coiling multiple
LIFEs into a silicone tube for implantation.64 Once
implanted, the distal active end of each LIFE is ex-
posed by heating with a tungsten rod or narrow laser
beam. The effective cross-section of electrode contact
points can be varied by relocating the active site of
each LIFE from the distal end to a more proximal
location. Surgical implantation, peripheral motor
nerve stimulation, and recording of the tibial fascicles
have been tested. These studies used 6-electrode
DIMEs that targeted medial and ulnar nerves. Func-
tional stimulation was shown by ankle movements,
while afferent recordings were accomplished by passive
limb manipulation.

Another intra-fascicular approach to peripheral
nerve interfacing is the transverse intra-fascicular
multichannel electrode (TIME).6,40 The design of the
TIME consists of four active sites on each side of a V-
bent, polyimide, thin-film electrode that are trans-
versely implanted into the nerve to directly contact
with the fascicles (Fig. 7). Stimulation of sciatic nerves
in the rat model have been achieved with the TIME.

Emerging techniques have sought to add therapeu-
tic effects to the nerve, in addition to signal transduc-
tion through stimulation. Intra-fascicular electrodes
have been developed with the aim of repairing nerve
damage at the vicinity of stimulation sites.24 Addi-
tionally, studies have demonstrated differentiation and
regeneration of neuronal and non-neuronal cells of the
nervous system through electrical stimulation33 and
through static magnetic field stimulation.50 These
techniques have the potential to be incorporated with
sensory stimulation electrodes for future improvement.

It is also possible that future stimulation techniques
may not require implanted electrodes. Upconversion
nanoparticles (UCNPs) have been used with low spa-
tial dispersion to activate neurons transfected with
light-sensitive ion channels.11 The characteristic prop-
erty of UCNPs is their ability to convert multiple low-
energy incident photons into a higher energy photon.
By transfecting neurons with light-sensitive ion chan-

FIGURE 7. Intradermal electrode designs (Cuff, Flat
Interface, Split Ring, and Transverse Intra-fascicular
electrodes) showing active sites of the electrodes (blue) and
afferent nerve (yellow) placement. Recruitment of different
regions of neurons along the nerve can be inferred from the
proximity to the active sites on the electrodes.
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nels, as is commonly done with optogenetic studies, the
released high-energy photons of the UCNPs can be
tuned to the wavelengths of the light-sensitive ion
channels in transfected neurons. UCNPs have been
widely adopted25,36,49 in the forefront of academic
research, but clinical applications would be further off
in the future. The use of UCNPs would require clinical
translation, particularly regarding the local transfec-
tion of neurons with light-sensitive ion channels and
validation of the prolonged stability of the UCNPs.
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