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Materials that exhibit X-ray-excited luminescence have 
great potential in radiation detection, security inspection, 
biomedical applications and X-ray astronomy1–5. However, 
high-performance materials are almost exclusively limited to 
ceramic scintillators, which are typically prepared under high 
temperatures6. Herein we report metal-free organic phos-
phors based on a molecular design that supports efficient trip-
let exciton harvesting to enhance radioluminescence. These 
organic scintillators exhibit a detection limit of 33 nGy s–1, 
which is 167 times lower than the standard dosage for X-ray 
medical examination and we demonstrate their potential 
application in X-ray radiography. These findings provide a 
fundamental design principle and new route for the creation 
of promising alternatives to incumbent inorganic scintilla-
tors. Furthermore, they offer new opportunities for develop-
ment of flexible, stretchable X-ray detectors and imagers for 
non-destructive radiography testing and medical imaging.

X-ray-responsive materials that display large X-ray attenuation 
coefficients due to heavy element constituents have found impor-
tant applications for bioimaging, radiotherapy and non-destructive 
testing7–11. Conventional X-ray-responsive materials include 
non-emissive radiocontrast agents (for example, iohexol and 
iopromide) and ceramic scintillators that can convert high-energy 
X-ray beams into low-energy visible photons2,12,13. So far, almost all 
reported X-ray scintillators are limited to inorganic phosphors or 
heavy-metal-containing organometallic complexes14. Metal-free 
organic phosphors have congenital advantages as scintillators, 
including abundant resource supplies, high mechanical flexibility, 
easy processing and large-area fabrication; however, weak X-ray 
absorption and inefficient exciton utilization have hindered devel-
opment of organic-molecule-based scintillators13. Organic phos-
phors are mainly composed of light atoms such as carbon, hydrogen 
and nitrogen, resulting in weak X-ray absorption (attenuation coef-
ficient μ ∝ Z4, Supplementary Equation (1)). Besides, the weak spin–
orbit coupling in conventional organic phosphors only generates 

fluorescence from singlet excitons following irradiation. In prin-
ciple, approximately 75% excitons are not well utilized, attributable 
to the dark state characteristic of the triplet excitons in metal-free 
organic phosphors15–17.

Phosphorescence can be generated from bright triplet excitons 
in organic luminescent materials at room temperature18–29. One 
strategy to realize room-temperature phosphorescence is to pro-
mote intersystem crossing (ISC) through heavy halogen atoms or 
aromatic carbonyl groups. Notably, the ISC rate constant (kISC) is 
proportional to the eighth power of the atomic number30 (kISC ∝ Z8, 
Supplementary Equation 2), indicating that heavy atoms can effi-
ciently populate triplet excitons. Another strategy is to suppress 
non-radiative energy dissipation by constructing a rigid environ-
ment through crystal engineering, host–guest doping or polymer-
ization31–33. As halogen atoms can efficiently harvest triplet excitons 
due to enhanced spin–orbit coupling, we therefore speculate that 
modulation of heavy halogen atoms may enhance radiolumines-
cence of organic chromophores (Fig. 1a).

We designed and synthesized a series of halogen-atom-containing 
organic material systems to validate our hypothesis (Fig. 1b). 
Oxygen and nitrogen atoms were also incorporated in molecu-
lar frameworks for enhanced n–π* transitions, facilitating the 
ISC process34. As a proof of concept, we first synthesized three 
isomers (ortho-ITC, meta-ITC and para-ITC) of 9,9'-(6-iodop
henoxy-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) with iodine 
atom modification at different positions. Their chemical struc-
tures and purities were characterized by 1H- and 13C-NMR spec-
troscopies, single-crystal X-ray diffraction, elemental analysis 
and high-performance liquid chromatography (Supplementary 
Section 1 and Supplementary Fig. 1). Strong luminescence 
was detected under ultraviolet radiation (Fig. 2a insets and 
Supplementary Fig. 2) and persistent emission was observed by 
the naked eye for several seconds after removing the ultraviolet 
lamp (Fig. 2a insets). Moreover, we observed intense lumines-
cence of these phosphors under X-ray excitation (Fig. 2b insets).
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We then investigated the photoluminescence of the isomers in 
the solid state under ambient conditions. All three isomers showed 
dual emission bands with one at around 390 nm and the other in 
the 500–700 nm range (Fig. 2a). The latter emission band features 
long luminescence lifetimes of 46.5 ms for o-ITC (535 nm), 72.2 ms 
for m-ITC (525 nm) and 106 ms for p-ITC (530 nm) (Fig. 2c  
and Supplementary Table 1), indicating the phosphorescence 
nature of the emission. Vibrational emission peaks between 500 
and 700 nm are separated by approximately 1,400 cm−1, signifying 
that the lowest excited triplet states are π-localized excited states. 
The maximum phosphorescence efficiencies of the o-ITC, m-ITC 
and p-ITC phosphors reach 38.2%, 37.1% and 19.1%, respectively 
(Supplementary Table 2).

In a further set of experiments, we explored radioluminescence 
behaviours of the isomers in the solid state. We found prominent 
bands of radioluminescence spectra at 535, 525, 530 nm for o-ITC, 
m-ITC and p-ITC, respectively (Fig. 2b). Compared with the pho-
toluminescence spectra, the corresponding radioluminescence 
spectra displayed similar emission wavelengths but with notably 
enhanced phosphorescence (Fig. 2b). The phosphorescent nature 
of emission bands at lower energy was confirmed by decay mea-
surements (Supplementary Fig. 3). It is worth mentioning that the 
integral area ratios of phosphorescence-to-fluorescence, derived 
from radioluminescence (13.59, 11.76 and 6.55 for o-ITC, m-ITC 
and p-ITC, respectively), are considerably larger than that from 
ultraviolet-excited counterparts (1.32, 0.81 and 0.48 for o-ITC, 

m-ITC and p-ITC, respectively) (Fig. 2d). This finding indicates the 
existence of different photophysical mechanisms between photolu-
minescence and radioluminescence processes. The radiolumines-
cence intensity of the o-ITC crystal was much higher than that of 
conventional organic scintillators (Supplementary Fig. 4), revealing 
the effect of heavy atom induction to molecular scintillators.

Given the efficient radioluminescence behaviour of o-ITC, 
we then selected it as a model to investigate its photostability. 
Importantly, when the phosphor was exposed to a high dose rate of 
X-ray (278 μGy s–1) for a continuous 30 min, the radioluminescence 
intensity remained at around 94% of the initial value, which is com-
parable with that of commercial plastic scintillators (Supplementary 
Fig. 5). Moreover, the emission intensity of the organic phosphor 
was stable even under repeated X-ray excitation (130 on–off circles, 
Fig. 2e). Apart from photostability duration, the detection limit of 
X-ray dosage is also critical for practical applications. X-ray-excited 
luminescence intensities were linearly correlated with the dose rate 
of X-rays (Fig. 2f). The detection limit of 33 nGy s–1 is approximately 
167 times lower than the standard dosage for X-ray diagnostics 
(5.5 μGy s–1; ref. 35).

To gain a deep insight into the mechanism of X-ray-excited 
organic luminescence, we synthesized a series of o-ITC-based 
control molecules by substituting the iodine atom with bromine, 
chlorine or hydrogen. These control molecules are named o-BrTC, 
o-ClTC and o-HTC, respectively (Supplementary Scheme 1). We 
compared the absorption coefficients of the four molecules (o-ITC, 
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Zmax = 53, Kα = 33.2 keV; o-BrTC, Zmax = 35, Kα = 13.5 keV; o-ClTC, 
Zmax = 17, Kα = 2.82 keV; o-HTC, Zmax = 8, Kα = 0.525 keV) and con-
firmed the heavy atom effect in absorbing X-ray photons (Fig. 3a). 
Apart from resonant absorption edges, the absorption coefficient 
of o-ITC across the entire energy region (1–1,000 keV) is higher 
than that of o-BrTC, o-ClTC and o-HTC (Fig. 3a). This trend well 
matches the relative phosphorescence proportion in that there is a 
positive correlation between the phosphorescence proportion and 
the atomic number of heavy atoms (Fig. 3b). Furthermore, we con-
ducted X-ray photoelectron spectroscopy to investigate escaped 
electrons from the surface of the o-ITC crystal (Supplementary 
Fig. 6). The generation of electrons and holes following X-ray irra-
diation was confirmed by photoconductive gain measurements 
(Fig. 3c; ref. 36).

Single-crystal analysis of o-ITC showed that each molecule is 
confined by neighbouring molecules with multiple intermolecular 
interactions, with distances of 2.615 (C–H···O), 2.886 (C–H···π), 
3.303 (π···π) and 3.481 Å (C–I···π) (Fig. 3d and Supplementary 
Fig. 7). This confinement results in a rigid molecule structure that 
effectively suppresses non-radiative decay of triplet excitons. The 
short distance (3.428 Å) between the iodine atom and the carbazole 
plane enhances ISC between singlet and triplet states and ultimately 
efficient room-temperature phosphorescence. We performed 
first-principles, time-dependent density functional theory calcula-
tions to probe this mechanism (Supplementary Fig. 8). Spin–orbit 

coupling constants (ξ) of S1 to Tn for o-ITC (S1–T2, 2.79 cm−1) were 
considerably larger than that of o-HTC without heavy atom con-
stituents (S1–T3, 0.69 cm−1). Furthermore, the rate constants for ISC 
(kISC) and phosphorescence (kp) of the organic molecules increased 
following halogenation (Supplementary Table 3). For example, kp of 
o-ITC is 11.6 s−1, 120 times higher than that of o-HTC (0.097 s−1). 
These results are consistent with heavy-atom-mediated ISC, sup-
porting the feasibility of harvesting triplet excitons to improve 
radioluminescence.

All things considered together, we proposed a plausible mech-
anism that controls radioluminescence in metal-free organic 
scintillators (Fig. 3e). Three stages are probably involved during 
X-ray-excited luminescence. At the first stage, X-ray photons are 
mainly absorbed by heavy atoms of the molecule via the photo-
electric effect. High-energy X-ray photons (5–50 keV) eject elec-
trons from the inner shells of the atoms. Fast photoelectrons 
subsequently induce a large number of secondary electrons. Those 
high-energy electrons and holes are rapidly thermalized in the low-
est unoccupied molecular orbital (LUMO) and the highest occupied 
molecular orbital (HOMO) of the organic molecules, respectively. 
The electrons and holes recombine to produce singlet and triplet 
excitons at a 1:3 ratio, according to spin statistics. The radiative 
decay processes of singlet and triplet excitons generate fluores-
cence and phosphorescence, respectively. Notably, the bright trip-
let excitons—due to strong spin–orbit coupling—render metal-free 
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organic molecules with efficient phosphorescent radiolumines-
cence compared with photoluminescence under ultraviolet exci-
tation. The maximum proportion of singlet excitons from o-ITC  
was calculated as 22% under X-ray irradiation (Supplementary 
Section 2), which agrees with the theoretical value. We further 
compared the luminescent properties of o-BrTC, o-ClTC and 
o-HTC molecules under ultraviolet or X-ray excitation. X-ray exci-
tation spectra indeed displayed a larger proportion of phosphores-
cence (Supplementary Figs. 9 and 10).

We further synthesized various heavy-atom-containing mate-
rials, such as an organic ionic crystal (TPOI), co-crystals (NIFB 
and PIFB) and a doped crystal (C3BrA), to verify the generality of 
our main findings (Fig. 4a and Supplementary Scheme 1). All of 
these organic materials showed intense X-ray-excited luminescence 
with distinct emission colours. Specifically, TPOI showed radiolu-
minescence at 586 nm, whereas NIFB and PIFB displayed radio-
luminescence with maximum emission peaks at 513 and 568 nm, 

respectively. For the doped C3BrA crystal, the radioluminescence 
peak was centred at 516 nm. These materials display tunable vis-
ible emissions and lifetimes that span many orders of magnitude  
(Fig. 4b,c and Supplementary Fig. 11).

Regarding the intense X-ray-excited luminescence, we next 
applied o-ITC molecules to X-ray radiography. We first fabricated 
a flexible polydimethylsiloxane film of o-ITC as the background 
substrate (Supplementary Fig. 12), which showed the same radio-
luminescence as the bulk crystal. A crab specimen was then placed 
between the X-ray source and the o-ITC film (Fig. 4d). The hard 
shell of the crab could be directly visualized using a commer-
cial digital camera (Fig. 4e). The application of this principle of  
X-ray contrast imaging also enabled inspection of the inner struc-
tures of an opaque capsule with a built-in metallic spring and a 
cylinder (Fig. 4f). These results demonstrate the potential of 
using organic molecules as flexible X-ray detectors for radiogra-
phy applications. Furthermore, the flexible nature of the resulting  
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materials can be optimized to combine with 3D printing or 
inkjet-printing techniques for fabrication of X-ray detectors with 
various shapes.

In conclusion, we have reported a molecular design principle 
of metal-free organic molecules to achieve high-efficiency radio-
luminescence. The modulation of heavy halogen atoms in a series 
of designed organic molecules promotes X-ray absorption and 
ISC, leading to intense X-ray-excited luminescence under ambient 
conditions. Our approach is applicable to small molecular crys-
tals, ionic crystals and host–guest systems, offering diverse emis-
sion colours and tunable radioluminescence lifetimes. The halogen 
atom effect can be harnessed to develop organic scintillators for 
non-destructive radiographic imaging at low levels of radiation 
exposure. Importantly, our finding not only provides a general 
design principle for achieving efficient X-ray-excited lumines-
cence with organic molecules, but also will broaden the utility of 
organic phosphorescent materials for optoelectronic and bioimag-
ing applications.
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