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Stimulated-emission depletion (STED) microscopy has pro-
foundly extended our horizons to the subcellular level1–3. 
However, it remains challenging to perform hours-long, 
autofluorescence-free super-resolution imaging in near-infrared 
(NIR) optical windows under facile continuous-wave laser 
depletion at low power4,5. Here we report downshifting lan-
thanide nanoparticles that enable background-suppressed 
STED imaging in all-NIR spectral bands (λexcitation = 808 nm, 
λdepletion = 1,064 nm and λemission = 850–900 nm), with a lateral 
resolution of below 20 nm and zero photobleaching. With a 
quasi-four-level configuration and long-lived (τ > 100 μs) meta-
stable states, these nanoparticles support near-unity (98.8%) 
luminescence suppression under 19 kW cm−2 saturation inten-
sity. The all-NIR regime enables high-contrast deep-tissue 
(~50 μm) imaging with approximately 70 nm spatial resolution. 
These lanthanide nanoprobes promise to expand the appli-
cation realm of STED microscopy and pave the way towards 
high-resolution time-lapse investigations of cellular processes 
at superior spatial and temporal dimensions.

Organic fluorophores are commonly used for STED micros-
copy and other super-resolution imaging techniques6–12. However, 
synchronized intense pulses in STED microscopy are often 
employed to compete with fast spontaneous fluorescence kinetics 
(k > 108 s−1)5,13, resulting in potential phototoxicity, photobleach-
ing and a significant depletion-induced re-excitation (DIRE) 
background. Moreover, organic fluorophores often work in the 
visible-light region, which reduces their applicability in deep tis-
sues14. Although spin-forbidden transitions significantly reduce 
the emission rates (k < 106 s−1), triplet-to-singlet transitions usually 
luminesce in low-temperature, anoxic environments15. Laporte’s 
parity-selection rule implies that electric-dipole 4f–4f transitions 
in lanthanide ions are forbidden. However, when the lanthanide 
ion experiences non-centrosymmetric interactions, the admix-
ture of opposite parity into 4f wavefunctions can relax the selec-
tion rule and produce long-lived luminescence16–19. With drastically 
stabilized emitting states (τ > 100 μs), lanthanide emitters have 
been explored for ultraviolet-visible-NIR lasing20–22 and, very 

recently, photon-avalanching-based super-resolution imaging23. 
Furthermore, for emitters with a quasi-four-level energy configu-
ration, the lower-lying level is well above the ground state; thus, 
significant population inversion can be sustained by low-power 
pumping, and re-absorption of laser radiation in a gain medium 
can be avoided completely. For example, neodymium (Nd), featur-
ing efficient stimulated emission, can be used to generate NIR lasing 
even under solar-light pumping24. By principles similar to lasing, 
we believe that STED microscopy employing rationally engineered 
lanthanide emitters can circumvent the aforementioned funda-
mental constraints and enable long-term background-suppressed 
super-resolution imaging with low-power continuous-wave (CW) 
lasers in the NIR optical window (Fig. 1a).

To validate our hypothesis, neodymium emitters were randomly 
integrated within hexagonal-phase NaYF4 nanocrystals with a large 
deviation from inversion symmetry (Supplementary Fig. 1)25. The 
opposite-parity-state admixing nature in neodymium emitters was 
confirmed by density functional theory calculations (Supplementary 
Fig. 2). When excited at 808 nm (NIR-I), these neodymium-activated 
nanocrystals containing hundreds of slow-emitting emitters pro-
duce two intense downshifted luminescence bands, one centred 
at 864 nm (NIR-I, 4F3/2→4I9/2) and the other at 1,064 nm (NIR-II, 
4F3/2→4I11/2; Fig. 1b and Supplementary Fig. 3). The 864 nm emission 
band was suppressed almost completely by adding a CW 1,064 nm 
depletion beam (Fig. 1c). Upon 808 nm excitation, the optimal sam-
ple with 1% neodymium activators achieved an absolute quantum 
yield of ~27.6% (Fig. 2a). Moreover, the downshifting luminescence 
at 864 nm from the NaYF4:Nd (1%) nanocrystals was nearly four 
orders of magnitude brighter than its upconverting luminescence 
at 588 nm (Supplementary Fig. 4). The intense downshifting lumi-
nescence can be ascribed to efficient population accumulation at 
the 4F3/2 level, since closely spaced high-energy levels suffer rapid 
non-radiative relaxation to the metastable state (4F3/2).

Next, we investigated the STED features of the as-prepared neo-
dymium STED nanoprobes (Supplementary Fig. 5). The intense 
NIR luminescence of all nanoprobes with various neodymium 
doping concentrations (from 0.1 to 8%) was drastically suppressed 
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upon depletion with a CW 1,064 nm beam. The DIRE background  
inherent to conventional STED nanoprobes was undetectable  
(Fig. 2b). Notably, slight doping with neodymium emitters facili-
tated the depletion processes in the nanoprobes, as indicated by the 
L-shaped depletion curves. Reducing the emitter concentration from 
8 to 0.1% enhanced the luminescence depletion efficiency (η) of the 
nanoprobes from 91 to 98.2% and diminished the saturation inten-
sity (Isat) by one order of magnitude (to ~0.045 MW cm−2; Fig. 2c).  
Moreover, when the excitation power was reduced (Fig. 2d), 
the depletion efficiency was promoted to 98.8% at ~19 kW cm−2 
saturation intensity, which is almost ten times lower than that 
(0.19 MW cm−2) reported in a previous study involving photon 
upconversion26 and is over two orders of magnitude lower than that 
of an organic dye5 (3.3 MW cm−2) or nitrogen-vacancy centres27 
(6.6 MW cm−2). Besides, it should be noted that the minimum dif-
fusion and high photostability of the nanoprobes can also contrib-
ute to the high depletion efficiency27,28. By contrast, conventional 

organic-dye-mediated STED microscopy is generally limited to a 
maximum depletion efficiency of ~90% (refs. 5,29,30).

The superior STED performance of the neodymium STED 
nanoprobes is mainly attributable to their unique four-level con-
figuration, which involves parity-conserved f–f transitions (Fig. 3a). 
Owing to the partially forbidden f–f transitions, the metastable-level 
(E3, 4F3/2) lifetimes of all the prepared neodymium STED nano-
probes were longer than 50 μs (Fig. 3b). For nanoprobes with a 
low neodymium content, as the increased average emitter dis-
tance (from approximately 1 to 4 nm) diminishes cross-relaxation 
(Supplementary Fig. 6), the lifetime of the NIR luminescence 
can be further prolonged to 400 μs, over four orders of magni-
tude longer than that of organic dyes or quantum dots (typically 
shorter than 10 ns). As corroborated by simulation, a long-lived 
metastable level (>10 μs) guarantees strong population inversion 
in a quasi-four-level energy-state model (Supplementary Fig. 7)31. 
Moreover, unlike conventional four-level fluorescence systems with 
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Fig. 1 | All-NIr quasi-four-level CW STeD microscopy. a, Working principle of the low-rate quasi-four-level system mediated by parity-forbidden 
transitions for efficient STED. The parity-selection rule of the emitters is partially relaxed at a lattice site without inversion symmetry, showing slow 
forced-subshell electronic transitions. A significant population inversion builds up between the long-lived metastable level (E3) and the fast-evacuated 
bottom level (E2) of the quasi-four-level system, enabling efficient STED of E3, which largely mitigates the luminescence. The terms ‘u’ (marked in 
grey) and ‘g’ (marked in blue) represent the ungerade and gerade parity involved in the transitions, respectively, and ‘u + g’ illustrates the possible 
opposite-parity-state admixing. DOS, density of states. b, Downshifted luminescence spectrum of neodymium-doped sodium yttrium fluoride 
(NaYF4:Nd) nanoprobes under a xenon lamp (~808 nm, 5 mW cm−2). The inset shows the corresponding downshifting luminescence pathway. c, NIR 
luminescence-mediated confocal images of NaYF4:Nd (1%) nanoprobes under 808 nm illumination (left) and 808 nm/1,064 nm co-illumination (right). 
The 864 nm emission band was extracted for detection. Pixel dwell time, 100 μs. Scale bar, 1 μm. The experiment was repeated three times independently 
with similar results.
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a thermally reachable level (E2), neodymium activators feature a 
substantial energy barrier (~2,100 cm−1) between the ground level 
(E1) and E2. As such, the thermal population of E2 from E1 is excep-
tionally inefficient, as evidenced by the temperature-dependent 
absorption spectra (Fig. 3c)32. As the temperature is increased, the 
population redistributed in the sub-levels of E1, and the absorbance 
gradually declined. Nevertheless, no absorption stemming from the 
E2→E3 transition can be observed even at 373 K, signifying that E2 is 
quasi-empty and imparts negligible DIRE to E3. Moreover, as indi-
cated by simulation results (Supplementary Fig. 8), rapid relaxation 
to E1 promptly evacuated the population accumulated on E2, further 
strengthening the quasi-empty nature of E2 and mitigating DIRE. 
Owing to the significant population inversion and the long-lived 
metastable level (E3, 4F3/2) of the neodymium emitters, their slow 
luminescence kinetics (<104 s−1) can be readily suppressed by the 
depletion beam, resulting in a near-unity depletion efficiency and 
negligible background noise. As revealed in experimental and 
simulated results (Fig. 3d and Supplementary Fig. 9), the NIR  

luminescence lifetime (4F3/2 level) declined sharply from 292 μs 
to below 25 μs under a depletion intensity of 0.5 MW cm−2. After 
increasing the depletion power to 5 MW cm–2, the lifetime was fur-
ther reduced to 8.5 μs, indicating that the STED process contributed 
97.1% of the overall depopulation process of the metastable level.

Near-unity luminescence depletion is critical for achiev-
ing high-resolution STED imaging because the maximum sup-
pression of luminescence can eliminate background noise and 
improve signal-to-noise ratios. Neodymium-activated nanopar-
ticles are highly resistant to surface quenching. Surface passiv-
ation with an optically inert sodium gadolinium fluoride (NaGdF4) 
layer does not markedly affect the luminescence of the nanopar-
ticles (Supplementary Fig. 10). This property circumvents the 
tradeoff between the high brightness and small physical dimen-
sions of the lanthanide nanoprobes. Small nanoprobes are ideal 
for high-efficiency cell labelling. We prepared monodisperse 
NaGdF4:Nd (1%) nanoprobes (6.68 ± 0.8 nm diameter) on glass 
slides for STED imaging (Fig. 4a). Under laser scanning at 808 nm, a 
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Fig. 2 | optical switching features of neodymium-activated NIr STeD nanoprobes. a, Downshifting luminescence intensities and corresponding absolute 
quantum yield of neodymium STED nanoprobes versus the emitter doping concentration (0.1–8 mol%). The inset shows a photograph of NaYF4:Nd 
(1%) nanocrystals dispersed in cyclohexane under 808 nm xenon lamp excitation at 5 mW cm−2. b, NIR luminescence suppression features of NaYF4:Nd 
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depletion beam, where the closed square symbols indicate the depletion beam only. The inset is an enlarged view of the low depletion intensity range. 
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diffraction-limited resolution of ~460 nm was measured. This value 
was readily sharpened to ~80 nm when a 1,064 nm doughnut beam 
(0.5 MW cm−2) was applied. In addition, in a line-profile analysis of 
a selected area containing single nanoparticles, the lateral resolution 
even reached below 20 nm (19.32 nm, Idepl = 7.1 MW cm−2, ~140 mW 
in average power), a 24-fold improvement over the optical diffrac-
tion barrier, or 1/42 of the excitation wavelength (Fig. 4b–d). These 
nanoprobes showed no sign of photobleaching after two hours of 
irradiation (Fig. 4e). Although fluorescent nanodiamonds with 
nitrogen-vacancy centres also present remarkable photostability, 
they require harsh synthesis conditions, have a broad size distribu-
tion and a much higher saturation intensity33,34. Furthermore, as 
NaGdF4:Nd nanocrystals offer facile hydrophobic-to-hydrophilic 
surface modification and negligible cytotoxicity (Supplementary 
Fig. 11a–c), we next implemented STED imaging on immunostained 
HeLa cells with microtubules labelled with antibody-conjugated 
neodymium STED nanoprobes (Fig. 4f–h and Supplementary  
Fig. 11d). As shown in the line-profile analysis, the intracellular 
microtubule structures were visualized down to a resolution of 57 nm.

For STED microscopy in the visible region, short-wavelength 
photons usually lead to phototoxicity and their working depth in 
tissue is strongly limited by light attenuation and aberration. For 
neodymium STED nanoprobes, with all wavelengths (λexc = 808 nm, 
λem = 850–900 nm and λdepl = 1,064 nm) confined in the NIR win-
dow, the phototoxicity could be efficiently eliminated. To demon-
strate the deep-tissue super-resolution imaging capability, these 
nanoprobes were first dispersed on glass slides, and mouse-brain 
slices of various thicknesses (5–50 μm) were then placed onto the 
nanoprobe-modified slides. These nanoprobes achieved a relatively 
consistent resolution of ~70 nm deep within the brain tissues with-
out needing aberration correction (Fig. 4i,j and Supplementary  
Fig. 12). The high resolution of the neodymium STED nanoprobes 
in deep tissues was attributed to two factors: the high signal-to-noise 
ratio induced by the largely mitigated light attenuation and the 
reduced chromatic aberration due to a subtle refractive-index  
difference between the NIR light beams35,36.

In conclusion, our quasi-four-level neodymium-activated 
downshifting nanoprobes have achieved near-unity (>98%) 
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depletion with a saturation intensity of ~19 kW cm−2. The slow 
parity-forbidden transitions of the quasi-four-level neodymium 
emitters enable a stable emitting state with significant population 
inversion without a thermally coupled re-excitation background, 
mitigating the fundamental constraints of low depletion efficiency, 
low imaging depth and high saturation intensity. This class of nano-
probes is not limited to nanoparticles activated with lanthanide ions, 
but can be extended through rational ligand-/crystal-field engineer-
ing. For instance, numerous transition metals can be integrated 
into nanoscale frameworks such as nanocrystals, organometallic 
complexes and metal–organic frameworks. Further developments 

in luminescent nanoprobe labelling with improved bioconjugation 
efficiency and minimized non-specific binding are likely to enable 
multiplex target detection and long-term tracking of subcellular 
bio-events in deep tissues37. Meanwhile, the viability of low-power 
CW illumination can significantly miniaturize the size and cost of 
the imaging system and promote the development of compact and 
possibly portable STED microscopes.
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