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are based on the von Neumann architec-
ture,[8] where information is continuously 
exchanged between memory units and the 
central processing unit. In contrast, under 
neuromorphic computing, information is 
processed in a decentralized manner in 
proximity to the memory. This strategy 
not only lowers the energy consumption, 
but also improves the efficiency in per-
forming complex cognitive tasks, such as 
recognition, reasoning, and interaction. 
Despite the robust development of the 
algorithms[9] for various artificial neural 
networks, the progress of neuromorphic 
computing has been constrained by a lack 
of dedicated hardware. To this end, many 
materials and structures have been pro-
posed, such as floating gate devices,[10,11] 
phase change materials,[12,13] ferroelectric 
materials,[14,15] and resistive random-access 
memory.[16,17]

Spintronic devices[18–22] stand out from the above competi-
tors, owing to their ultrafast dynamics and virtually unlimited 
endurance. Meanwhile, spintronic devices possess key features 
required for neuromorphic computing, such as nonlinearity,[20] 
stochasticity,[18] and nonvolatility.[1] Among the state-of-the-
art research, studies on spintronic neuromorphic computing 
revolve around the electrical manipulation of the magnetization 
of a ferromagnet, by either spin-transfer torque[19,20,23] or spin–
orbit torque (SOT).[21,24,25] Microscopically, the magnetization is 
switched via either the coherent mode or the incoherent modes, 
where the latter are further broken down as domain wall prop-
agation and domain nucleation.[26] The incoherent modes are 
particularly valuable for neuromorphic computing, since they 
not only lower the switching threshold current thus improve 
the energy efficiency, but also provide stable intermediate states 
that effectively transform to memristive plasticity. Spintronic 
devices based on domain wall propagation have been utilized 
to mimic synapses[25] and spiking neurons,[4] or to demonstrate 
spike-timing-dependent plasticity.[1,4]

Despite the increasing popularity, current approaches of 
implementing spintronic devices in artificial neural networks 
experience challenges in two aspects. First, to achieve field-
free deterministic switching, the symmetry of SOT has to 
be broken, usually by engineering interfacial exchange cou-
pling,[27,28] structural asymmetry,[29,30] magnetic anisotropy,[31,32] 
or composition gradient.[33] These approaches rely on delicately 
tailored fabrication processes or complex device structures or 
both. Second, domain wall propagation is prone to the pinning 

Neuromorphic computing has become an increasingly popular approach for 
artificial intelligence because it can perform cognitive tasks more efficiently 
than conventional computers. However, it remains challenging to develop 
dedicated hardware for artificial neural networks. Here, a simple bilayer spin-
tronic device for hardware implementation of neuromorphic computing is 
demonstrated. In L11-CuPt/CoPt bilayer, current-inducted field-free magnetiza-
tion switching by symmetry-dependent spin–orbit torques shows a unique 
domain nucleation-dominated magnetization reversal, which is not accessible 
in conventional bilayers. Gradual domain nucleation creates multiple inter-
mediate magnetization states which form the basis of a sigmoidal neuron. 
Using the L11-CuPt/CoPt bilayer as a sigmoidal neuron, the training of a deep 
learning network to recognize written digits, with a high recognition rate 
(87.5%) comparable to simulation (87.8%) is further demonstrated. This work 
offers a new scheme of implementing artificial neural networks by magnetic 
domain nucleation.

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.202103672.

1. Introduction

Neuromorphic computing is regarded as a form of unconven-
tional computing that emulates a biological brain on different 
levels of computing hierarchy.[1–7] Traditionally, computers 
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effect of defects.[34] Although magnetic skyrmions have been 
proposed to alleviate the problems introduced by pinning,[35–37] 
the electrical manipulation of magnetic skyrmions is techni-
cally challenging as well.

We believe that the above challenges can be tackled from 
a material perspective. Previously, we demonstrated current-
induced field-free switching in a simple bilayer structure of 
L11-CuPt/CoPt, owing to an exotic symmetry-breaking SOT 
arising from a low-symmetry point group.[38] In this work, we 
show that the mode of field-free switching in the above bilayer 
is dominated by domain nucleation, which has been rarely 
employed for neuromorphic computing. Comparing to domain 
wall propagation, domain nucleation has a much less stringent 
requirement on defects, since they naturally form the basis of 
intermediate states. The integration of crystal symmetry and 
domain nucleation in magnetization switching offers excel-
lent plasticity, allowing the L11-CuPt/CoPt bilayer to be used 
as a sigmoidal artificial neuron for a deep learning network. 
To demonstrate our spintronic neuron’s potential for on-chip 
training, we perform live training on the written digit dataset 
from the Modified National Institute of Standards and Tech-
nology (MNIST) database, and achieve a recognition rate com-
parable to simulation.

2. Results and Discussion

Single-crystalline L11-CuPt/CoPt bilayers were deposited on 
SrTiO3 (111) substrate at elevated temperatures using the DC 
magnetron sputtering technique (see the Experimental Section).  
Referring to Figure 1a, the (111) plane of the bilayer has mirror 
planes with a threefold symmetry. As demonstrated previ-
ously,[38] no field-free switching was observed when a charge  
current was applied along the mirror planes (high-sym-
metry axes), whereas field-free switching of the largest ratio 
was observed when the charge current was applied in the 
middle between the mirror planes (low-symmetry axes). The  
L11-CuPt/CoPt bilayer was pattern into Hall bars to align the cur-
rent channel with one of the low-symmetry directions (φI = 0°,  
60°, 120°) (Figure  1b). Figure  1c shows the typical anomalous 
Hall resistance (RH) measured with the magnetic field (Hz) 
applied in the out-of-plane direction. The squareness of the 
hysteresis loop indicates excellent perpendicular magnetic ani-
sotropy. We applied pulsed DC current (see the Experimental 
Section) and measured RH under different in-plane magnetic 
field (Hx) (Figure 1d). When the direction of Hx was reversed, 
e.g., from −500 to 500 Oe, the loop polarity was also reversed. 
This is because the damping-like SOT arising from the spin 

Figure 1. Current-induced magnetization switching in L11-CuPt/CoPt. a) Crystal structure and symmetry. No field-free switching for current along high 
symmetry (mirror plane) direction. b) Schematic of the measurement coordinates. c) Anomalous Hall resistance (RH) versus applied out-of-plane 
magnetic field (Hz). d) RH versus current density (J) with different in-plane magnetic fields (Hx). Arbitrary offsets are added to separate the plots. 
e) Minor field-free switching loops (RH vs J) with different maximum J. f) Maximum field-free switching loops (RH vs J) with different pulses width 
of current. g) Tunable current range (ΔI) versus pulse width of current, where ΔI covers at least 99% of changes in RH. Arrows in (c)–(f) indicate the 
sweep direction.
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Hall effect is odd in magnetic moment. Therefore, an opposite 
current-induced longitudinal effective field is required when 
the in-plane component of magnetic moment is flipped. In the 
absence of an applied magnetic field (Hx  = 0  Oe), determin-
istic bipolar switching was unambiguously observed, with a 
switching ratio (ΔRRatio) of 69.1%. Here, ΔRRatio is defined as the 
ratio of current-induced maximum change in Hall resistance 
(ΔRAHE,I) to field-induced maximum change in Hall resistance 
(ΔRAHE,H). ΔRRatio can be increased to 96.88% by patterning 
the CoPt layer into a round pillar, which alleviates the pinning 
effect of the Hall leads (Section S1, Supporting Information).

Figure 1e–g demonstrates additional features of the field-free 
switching in L11-CuPt/CoPt bilayer, which are crucial for its 
application in neuromorphic computing. Figure  1e shows the 
minor switching loops by limiting the maximum current den-
sity. The presence of minor loops shows that the intermediate 
magnetization states are stable, confirming the nonvolatility. In 
addition, the values of RH are roughly the same for all minor 
loops at large negative pulses (≈− 6 × 107 A cm−2). This shows 
that the magnetization state can always be recovered, regard-
less of the starting point. Figure 1f shows the largest switching 
loops at different current pulse widths. While ΔRAHE,I decreases 
slightly with decreased pulse width, the squareness of the loop 
deteriorates, and the number of distinguishable intermediate 
states increases. We plot ΔI, which is the minimum current 
range covering at least 99% of ΔRAHE,I, as a function of pulse 
width. In Figure  1g, ΔI increases nonlinearly with decreasing 
pulse width, which implies remarkable plasticity since the 

number of intermediate states can be finely controlled by the 
pulse width. Notably, ΔI can be further increased by decreasing 
the pulse width to the nanosecond range.[24]

We investigated the mode of magnetization switching using 
the magneto-optical Kerr effect (MOKE) microscopy. Figure 2a 
shows an example of the MOKE image. We first initialized the 
magnetization state to +Mz by applying a large magnetic field 
in the +z direction. Then we applied current pulses with dif-
ferent amplitudes I and an in-plane magnetic field Hx in the 
direction of I. Figure 2b–e shows the changes in magnetization 
state marked by the yellow rectangle in Figure 2a after succes-
sive current pulses. In Figure 2b,c, I was increased (more nega-
tive) by a step of −0.1 mA and the magnetization was captured 
after applying only one pulse. Comparing the areas marked by 
the red rectangle, the proportion of −Mz domains (white color) 
grows with increasing I in a dispersed manner when Hx  = 0, 
which is akin to a domain nucleation process. On the other 
hand, when Hx = −1000 Oe, the area of −Mz expands continu-
ously in all directions, implying a domain wall propagation 
process. In Section S2 in the Supporting Information, we also 
show the MOKE images for switching from −Mz to +Mz. The 
modes of magnetization switching can be further examined 
by applying a number (NP) of current pulses with the same 
amplitude (Figure 2d,e). We chose a relatively small I for both 
Hx = 0 Oe and Hx = −1000 Oe, in order to observe the gradual 
changes. When Hx  = 0  Oe (Figure  2d), the right domain wall 
(marked by the red line) of the initially nucleated −Mz domain 
(when NP = 1) remains almost unchanged even after 200 current 

Figure 2. Modes of incoherent magnetization switching in L11-CuPt/CoPt. a) Schematic of the measurement setup. b,c) Changes in magnetization 
state after one current pulse of different magnitudes, c) with and b) without the applied in-plane magnetic field (Hx). d,e) Changes in the magnetization 
states after multiple current pulses of the same magnitude, e) with and d) without Hx. Np refers to the number of current pulses. f) Schematic of the 
changes in magnetization state under domain wall propagation and domain nucleation.
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pulses, while the left domain wall only moves slightly leftward. 
In contrast, at Hx = −1000 Oe (Figure 2e), the right domain wall 
(marked by the red line) moves rightward unambiguously as 
NP increases, and eventually merges with another propagating 
domain wall when NP = 200.

Manipulation of the magnetization switching mode can be 
understood by the following factors. First, the requirement of 
an in-plane magnetic field (Hx) for domain wall propagation 
has been well documented.[39–42] Application of an Hx collinear 
with the current breaks the chirality imposed by Dzyaloshin-
skii-Moriya interaction (DMI) on the Néel domain wall. As a 
result, the current-induced out-of-plane effective fields on oppo-
site domain walls have the same sign, enabling domain wall 
propagation in all directions. Second, domain nucleation can 
be understood from an energy perspective. The switched mag-
netization (m) per SOT (τ) is proportional to the probability of 

switching (e
n

B
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k T) and the proportion of unswitched area (1−m), 
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k T ,[26] where En, kB, and T are the switching 

energy barrier, Boltzmann constant, and the temperature, 
respectively. En has a spatial distribution across the sample, 
which follows the normal distribution statistically. In the 
absence of a chirality-breaking magnetic field, the proportion 
of switched magnetization grows when a larger current over-
comes higher En. This explains the variation in nucleation with 
current along the x-direction in Figure 2b. It also explains the 
switching behavior in Figure 2d, which is localized and almost 
independent of Np, because only the regions with sufficiently 
low En can be switched for current pulses of a given amplitude. 
Under domain wall propagation, however, an additional cur-
rent pulse of the same magnitude triggers additional switching 
events, since domain wall propagation does not require extra 
energy, if the domain wall pinning is neglected. This explains 
the gradual switching in Figure 2e as Np increases. Therefore, 
although the incoherent magnetization switching is based on 
the combined effects of domain nucleation and domain wall 
propagation, domain nucleation plays a dominating role in 
our sample when Hx  = 0  Oe, while domain wall propagation 
is more dominant when Hx = −1000 Oe. In addition, it is worth 
noting that magnetization switching always begins from the 
central area along the y-direction in Figure 2b–e. We attribute 
this to the higher current density at the center, which provides 
larger SOT. Figure 2f shows the changes in magnetization state 
under domain wall propagation and domain nucleation. Just 
like domain wall propagation, domain nucleation in our bilayer 
supports multiple intermediate states but without applying an 
external field (Hext) or engineering an effective internal field 
(Heff). In addition, domain nucleation is less prone to defects, 
which, in contrast, adversely affects the performance of devices 
based on domain wall propagation.

In the following sections, we used our L11-CuPt/CoPt bilayer 
as an artificial neuron to build and train a deep learning net-
work. In a previous study,[26] both theoretical calculations and 
experimental observations show that the number of nucleated 
domains exhibits a normal distribution with the magnitude of 
SOT. We illustrate in Figure 3a that this mechanism naturally 
transforms our bilayer device to a domain nucleation-based 
sigmoidal neuron. Assuming a normal probability distribution 

function (PDF) of the number of nucleated domains (ND) with 
current (I), the cumulative distribution function takes a sig-
moidal shape and describes the proportion of switched areas 
(PD). Figure  3b shows a typical switching loop. The shaded 
region indicates the selected data points covered by ΔI, in a 
process similar to Figure  1g. Then an analog sigmoid func-
tion is constructed by mapping the selected R–I data points 
in Figure  3b onto a sigmoid function. The resulting analog 
sigmoid function is plotted in Figure  3d, which differs only 
slightly from an ideal sigmoid function, and thus verifies the 
mechanisms in Figure 3a. Based on the analog sigmoid func-
tion, a live sigmoid function was constructed. Each input X is 
transformed to a current I that passes through a Hall bar made 
of the L11-CuPt/CoPt bilayer, then the measured RH is con-
verted to an output Y. Two points are noteworthy in this pro-
cess. First, as shown in Figure 3c, if a subsequent current pulse 
is higher than the previous pulse (I2 > I1), only a SET pulse is 
required. If the I2 < I1, however, a RESET pulse is applied before 
the SET pulse to avoid the hysteresis of minor switching loops 
(Figure 1e). Second, in order to protect the Hall bar device from 
overheating, the input current I is limited within the selected 
current range (ΔI).

We performed three types of training in this work (see the 
Experimental Section), as illustrated in Figure  4a. The first 
type is based on an ideal sigmoid function. In the second 
type, the switching loop from a single device is measured 
once to construct the analog sigmoid function, and the rest 
of the training is performed on a computer. The third type 
is the focus of this work. Each neuron in the artificial neural 
network corresponds to a Hall bar device made of L11-CuPt/
CoPt bilayer. The RH−I data pair was continuously measured 
when the live sigmoid function was called during training. 
Figure 3d shows the live sigmoid function from an exemplary 
device before and after training, where 1.2 × 105 to 2.4 × 105 
current pulses passed through the underlying Hall bar device. 
The live sigmoid function closely resembles the ideal and the 
analog sigmoid functions, and changes negligibly after the 
training, indicating good endurance. In Section S3 in the Sup-
porting Information, we also show the live sigmoid functions 
from other devices, where all of them survive the training 
without substantial deterioration, indicating good repeatability 
across devices. We find that the differences in ΔI are small for 
devices from the same sample. Nevertheless, we calibrate each 
device individually before training such that the mapping of 
RH–I to Y–X is sufficiently accurate for all neurons. Figure 4b 
shows the dataset and network used in our training. We use 
the MNIST written digit dataset, and the classic 1-hidden-layer 
feed forward neural network based on gradient descent (see the 
Experimental Section). Figure 4c shows the circuit for training 
with live sigmoid function, which we develop based on a pre-
vious study.[25] We exploit the auxiliary output channels of a 
lock-in amplifier to control the selector circuit, which allows 
all circuits in Figure  4c to be controlled synchronously by a 
single programming language (Python 3.8 in our case) with 
minimal delays. In Section 4 in the Supporting Information, 
we present a more detailed hardware connection of the spin-
tronic neurons. The selector circuit activates the connections 
to each neuron sequentially such that the neurons are accessed  
individually.

Adv. Mater. 2021, 33, 2103672
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In Figure 5a, the recognition rates based on both the analog 
and live sigmoid functions are close to that of the ideal sig-
moid function during the entire training process on the 60 000 
training examples. The respective values of loss are shown in 
Figure  5b, all of which decrease continuously toward satura-
tion. These results imply the plausibility of our spintronic arti-
ficial sigmoidal neuron. The recognition rate from the analog 
sigmoid function is even slightly better than that of the ideal 
sigmoid function. We speculate the reasons behind this dif-
ference to be the nonideality of the analog sigmoid func-
tion, which effectively introduces additional biases that could 
increase the recognition rate during the training process. The 
highest recognition rates achieved from training are 80.9%, 
82.2%, and 78.5%, for the ideal, analog, and live sigmoid func-
tions, respectively. We test the trained networks using the 
10 000 testing examples, and obtain recognition rates of 87.8%, 
89.1%, and 87.5% for the ideal, analog, and live sigmoid func-
tions, respectively.

We further performed a control experiment to validate the 
effectiveness of our spintronic neuron and to confirm that our 
spintronic neuron is the critical component, without which 
training cannot be completed using simulation alone. We 

deliberately overloaded the artificial neuron, by decreasing 
the delay time between successive pulses and using a single 
device to support ten neurons (Figure  5c, inset). The recog-
nition rate (Figure  5c) and loss (Figure  5d) deviate substan-
tially from those of the ideal sigmoid function after training 
≈1500 examples. The recognition rate (loss) even starts to drop 
(rise) after training about 3500 examples. We measure the 
switching loop after 6000 examples. Its offset has shifted and 
its curvature has changed with substantially reduced ΔRAHE,I 
(Figure  5d, inset). These features indicate that the device 
under investigation has deteriorated, probably due to over-
heating. These experimental results demonstrate that our arti-
ficial neural network relies on the spintronic neuron because 
hardware failure of the neuron unambiguously results in 
failure of the network.

3. Conclusion

In summary, we have shown that the dominating microscopic 
mode of field-free magnetization switching in an L11-CuPt/
CoPt bilayer is domain nucleation rather than domain wall 

Figure 3. Spintronic sigmoidal neuron. a) Schematic illustration of the mechanism behind the domain nucleation-based sigmoidal neuron. Upper: 
probability distribution function (PDF) of the number of nucleated domains (ND) with current (I). Lower: cumulative distribution function of the nucle-
ated domains (PD) with I. b) A typical switching loop. Data points marked by black color in the shaded region are selected as the basis of the analog 
and live sigmoid functions. c) Illustration of SET and RESET pulses in each training cycle. d) Exemplary plots of the analog sigmoid function, and a 
live sigmoid function before and after training.
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propagation. Owing to the multiple stable intermediate mag-
netization states, devices made of the bilayer can be utilized as 
sigmoidal neurons for a deep learning network. Live training 
based on these spintronic neurons achieves a high recogni-
tion rate on the MNIST written digit dataset, comparable to 
the results of pure simulation based on an ideal sigmoid func-
tion. Our work demonstrates the utility of crystal symmetry for 
hardware implementation of neuromorphic computing. We 
also highlight that domain nucleation, though less utilized, 
has huge potential for application in neuromorphic computing 
because of its advantages over domain wall propagation. We 
believe the results in our work provide value experimental evi-
dences for evaluating the practical performance of spintronic 
neurons, and will stimulate more effort in developing all-spin 
artificial neural networks.

4. Experimental Section
Sample Fabrication: The L11-CuPt (10 nm)/CoPt (4 nm) bilayers were 

deposited on SrTiO3 (111) substrate using the DC magnetron sputtering 
method with a base pressure of less than 1 × 10−8 Torr. The CuPt layer 
was co-sputtered at 500 °C using a Cu target and a Pt target to achieve 
an atomic ratio of Cu:Pt = 1:1. Then the sample was cooled to 300  °C 
before depositing the CoPt layer, which was also co-sputtered using 
a Co target and a Pt target to achieve an atomic ratio of Co:Pt = 1:1. 
The sample was then cooled to room temperature to deposit a 2 nm 
protective Si3N4 layer. The bilayer sample was patterned into Hall bars 
using a combination of photolithography and ion beam etching. The 
current channel was aligned with the low-symmetry directions (see 
Figure 1a), with lateral dimensions of 3 µm  × 40 µm. An electrode of Ti 
(5 nm)/Cu (100 nm) was deposited.

Electrical Measurement: A Keithley 6221 source meter was used to 
generate DC current pulses with pulse widths of 5–300 µs. After 2 s, a 
Zurich Instrument MFLI lock-in amplifier was used to pass a small AC 

current of 50 µA and 317.3 Hz to the current channel of the Hall bar and 
measured the modulated RH.

MOKE Measurement: A magneto-optic Kerr effect microscope 
manufactured by Evico Magnetics was used to observe the magnetization 
state. For each series of measurement, the magnetization state was first 
initialized using a large out-of-plane magnetic field. The background 
signal was removed to enhance the contrast. Each time after a current 
pulse was applied, the magnetization was allowed to stabilize for 2 s 
before taking the image.

Circuit for Live Training: The input current for live training had a fixed 
pulse width of 5 µs and a fixed measurement delay of 2 s, except for 
the part on overloading (Figure  5c,d), where the measurement delay 
was reduced to 1.5 s. A bilayer sample with ten Hall bar devices was 
mounted on a customized PCB. The devices were connected to the 
PCB by wire bonding. One 1:16 analog demultiplexer (DEMUX) and 
two 16:1 analog multiplexers (MUX) were used to select one of the ten 
Hall bar devices, where the extra six channels are vacant. The DEMUX 
and MUXs were controlled in parallel by four auxiliary output channels 
(since 24 = 16) of the MFLI lock-in amplifier, which sourced DC voltages 
of 2 V. The selector circuit was bypassed to overload a single Hall bar 
device. All instruments for live training were controlled remotely by 
using Python 3.8.

Dataset and Algorithms of Training: The written digit dataset from 
MNIST was consisted of 60 000 labeled training examples and 10 000 
labeled testing samples, all of which had a resolution of 28 × 28 pixels. 
A classic trilayer feed forward artificial neuron network was used, which 
was consisted of an input layer, a hidden layer, and an output layer. The 
training images were converted to 1D arrays of length 784 (28 × 28 = 784). 
Thus, the input layer had 784 neurons. Both the hidden layer and output 

layers had ten neurons. A sigmoid function =
+









−

1
1 e

y
x

 was used as 

the activation function of the hidden layer, which was replaced by the 

analog and live sigmoid functions for different types of training. A 

softmax function [ =
∑ =

( ) e
e1

S a
a

k
N a

j

k

, where ∀j  ∈ 1…N, and N  = 10 in 

this case] was used as the activation function of the output layer. The 
number of recognized examples (NR) increased by one if the index of 

Figure 4. Network and circuit for training. a) Schematic illustration of three types of sigmoid function used for training. b) Data set and network for 
training. The first samples of each digit are printed as examples. c) Schematic illustration of the circuit and connection for training with the live sigmoid 
function. Shaded regions in all sub figures highlight the processes that occur on Hall bar devices.
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the output neuron with the highest probability was the same as the 

label. The recognition rate 


 


R

T

N
N  was computed as the ratio of number 

of recognized examples (NR) over the total number of trained examples 
(NT). A simple mean square function was used as the loss function  

[ = ∑ −1
2

(ˆ )
T

2L
N

y yd d , where ŷd is the computed output and yd is the actual 

output (label)]. To complete one training cycle, backward propagation 
and gradient descent were performed, where the detailed procedures are 
presented in Section S5 in the Supporting Information.
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