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Blue-emitting phosphors have drawn considerable attention 
due to potential applications in display, lighting, biomedi-
cine and optical communication1–5. For instance, blue light is 

the core component of white emission for solid-state lighting and 
full-colour display2. To date, diverse blue-emissive materials have 
been developed, such as persistent luminescent materials with 
long-lived emissive lifetimes6, organic phosphorescent complexes 
with nearly 100% utilization of both singlet and triplet excitons7 and 
purely organic luminogens with thermally activated delayed fluo-
rescence8. Recently, organic phosphorescent materials have been 
developed as alternatives to inorganic persistent luminescent mate-
rials through crystallization-inducement9–11, H-aggregation12,13, 
cocrystallization14,15, polymerization16,17 or host–guest doping18,19, as 
well as many other methods20–22. Despite success in achieving tun-
able emission colours, it remains a formidable challenge to develop 
heavy-atom-free, blue phosphorescent materials with long lifetimes 
and high conversion efficiencies.

To obtain phosphorescence in heavy-atom-free organics, 
two prerequisites are essential: one is to boost triplet excitons by 
accelerating exciton intersystem crossing (ISC) from singlet- to 
triplet-excited states; the other is to minimize dissipation of trip-
let excitons through non-radiative transition by constructing a 
rigid molecular environment23–25. Triplet excitons are known to 
dissipate through non-radiative transition, delayed fluorescence, 
triplet–triplet annihilation and luminescence quenching8,25–29  

(Fig. 1a). Crystal engineering through intermolecular locking can pro-
mote phosphorescence by suppressing molecular-motion-induced 
non-radiative transition30. However, crystal engineering may dissi-
pate triplet excitons through triplet–triplet annihilation and cause 
a bathochromic shift in phosphorescence, making it challenging to 
develop long-lived blue emitters (Supplementary Fig. 2). Notably, 
phosphorescence emission can blue-shift in a single-molecule state 
but not in its aggregated state31. Furthermore, high-efficiency phos-
phorescence can be obtained for luminogens in the single-molecule 
state at 77 K. We reasoned that confining isolated chromophores in 
rigid crystals with minimal non-radiative transition might notably 
boost blue phosphorescence efficiency (Fig. 1c).

To validate our hypothesis, we chose pyromellitic acid 
(PMA) with four carboxyl groups as a model chromophore 
(Supplementary Scheme 1). These carboxyl groups can ionize in 
the presence of sodium hydroxide to form multiple ionic bonds 
and ultimately a rigid molecular network, efficiently suppressing 
molecular-vibration-induced non-radiative transition. Moreover, 
exciton ISC in the rigid molecular network can be facilitated to 
enhance phosphorescence. As a proof of concept, tetrasodium pyro-
mellitate (TSP) was synthesized (Fig. 2a) by volatilizing an aqueous 
mixture of PMA and NaOH reagents at 323 K. The chemical struc-
ture of TSP was characterized by single-crystal X-ray diffraction. 
The phase purity of TSP crystals was also confirmed by X-ray pow-
der diffraction (Supplementary Fig. 3). Bright deep-blue afterglow 
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was observed for several seconds by the unaided eye after cessa-
tion of 310 nm lamp excitation (Supplementary Video 1). Moreover, 
these organic phosphors showed good chemical and environmental 
stability, as confirmed by photoluminescence (PL) characterizations 
under varying conditions (Supplementary Figs. 4–6).

We next investigated the photophysical properties of TSP phos-
phors under ambient conditions. Both steady-state PL and phos-
phorescence spectra of TSP crystals showed blue emission at 447 nm 
(Fig. 2b and Supplementary Fig. 7). The maximal emission lifetime 
of TSP crystals at 447 nm is 168.39 ms under ambient conditions 
(Fig. 2c). The phosphorescence nature was further confirmed by 
a controlled experiment on oxygen sensitivity (Supplementary  
Fig. 8). The emission band at around 325 nm is indicative of a fluo-
rescence feature with a 0.41 ns lifetime (Supplementary Fig. 9). Both 
PL and phosphorescence spectra showed dominant emission bands 
at approximately 447 nm under excitation from 220 to 340 nm  
(Fig. 2d,e). The absolute phosphorescence quantum efficiency of 
TSP crystals reached 66.9%. Notably, there was a slight change in 
both PL and phosphorescence spectra as well as in emission decay 
at 77 K (Supplementary Figs. 10 and 11). The phosphorescence life-
time of the emission at 447 nm is 209.85 ms (77 K). These results 
suggest that chromophore ionization can suppress molecular 
motion for enhanced phosphorescence with the same effect as the 
low temperature (77 K).

We further conducted a set of experiments in dilute solution 
and single-crystal states. The phosphorescent spectrum of PMA 
in dilute solution revealed a dominant emission band at 442 nm 
(Fig. 3a). After sodium ionization, a similar emission at 447 nm was 
observed for PMA under the same conditions (Supplementary Fig. 
12), indicating that sodium ions did not influence phosphorescence. 
We speculate that TSP phosphorescence of chromophores in ionic 
crystals and dilute solution may behave similarly at 77 K. Analysis 
of molecular distribution in the crystal indicates that PMA chromo-
phores were separated by sodium cations, resembling a cage shape 
(Fig. 3b,c). Despite a lack of intermolecular interactions between 
chromophores, each chromophore unit is toggled with numer-
ous chemical bonds, O···O–Na interactions (μ−O, 2.717−2.930 Å, 
where μ−O represents the oxygen atoms connected to counter ions 
through ionic bonds) and some water molecules (Supplementary 
Fig. 17), forming a rigid and isolated molecular environment sur-
rounding the chromophore.

We further confirmed the origin of blue phosphorescence 
from discrete chromophores rather than chromophore aggre-
gates. Disodium pyromellitate (DSP) was synthesized as a control 
by changing the molar ratio of PMA/NaOH to 1:2. DSP crystals 

showed persistent yellow luminescence, lasting approximately 4 sec-
onds upon cessation of the excitation. The PL and phosphorescence 
emissions of DSP were localized at 391 and 530 nm with lifetimes 
of 0.41 ns and 354.64 ms, respectively (Fig. 3d and Supplementary  
Fig. 13). Compared with TSP phosphors, both PL and phospho-
rescent spectra of DSP only partially overlapped, suggesting a low 
phosphorescence efficiency (only 2.8% for phosphorescence). 
Single-crystal analysis indicates that apart from multiple ionic 
bonding, π–π stacking exists in the aggregated state between phenyl 
chromophores. Efficient π-orbital coupling between neighbouring 
phenyl chromophores can suppress non-radiative transitions and 
enhance phosphorescence (Fig. 3e and Supplementary Figs. 13 and 
15). However, compared with TSP, DSP features stronger orbital 
coupling due to π–π stacking, enabling dissipation of triplet exci-
tons through triplet–triplet annihilation with low phosphorescence 
efficiency (Supplementary Fig. 16).

We performed theoretical simulations to confirm the influ-
ence of ionization on phosphorescence. Upon ionization, the 
spin–orbit coupling matrix elements increased (Supplementary 
Fig. 23), consistent with the experimental rate of ISC. The ISC 
rate (1.63 × 109 s−1) of TSP is 27-fold faster than that of PMA 
(6.05 × 107 s−1; Supplementary Table 4). Based on experimental and 
theoretical results, we reasoned that high-efficiency blue phospho-
rescence derives from the chromophore in a single-molecule state. 
Strong ionic bonds render each chromophore with a rigid, isolated 
environment, thereby decreasing non-radiative decay rates and 
boosting ISC rates (Fig. 3f).

To prove the universality of our approach for high-efficiency 
blue phosphorescence, we synthesized a series of ionic phosphors 
with diverse counterions and molecular architectures, including 
tetrapotassium pyromellitate (TPP), hexasodium mellitate (HSM), 
hexapotassium mellitate (HPM), tetraammonium pyromellitate 
(TNP) and tetrabenzylamine pyromellitate (TMP; Fig. 4a and 
Supplementary Fig. 28). All these phosphors exhibited blue phos-
phorescence similar to that of the TSP phosphor (Supplementary 
Fig. 7). Both steady-state PL and phosphorescence spectra exhib-
ited emission peaks at 420, 407, 410, 454 and 464 nm for TPP, 
HSM, HPM, TNP and TMP crystals, respectively. Notably, the 
TNP crystal has an absolute quantum efficiency of 96.5% (Fig. 4c). 
Moreover, we found that all phosphors under study have relatively 
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long lifetimes (101.20–199.17 ms; Fig. 4b,d and Supplementary  
Fig. 28). Their PL and phosphorescence spectra at 77 K as well as 
their phosphorescent lifetimes are similar to those obtained at room 
temperature (Supplementary Figs. 10 and 11), indicating that chro-
mophore ionization and low-temperature treatment have a similar 
effect on phosphorescence enhancement. As with the TSP phos-
phor, these ionic phosphors displayed phosphorescence spectra 
similar to those obtained in dilute solution at 77 K (Supplementary 
Fig. 12). Analysis of molecular distribution in crystals reveals that 
these chromophores are arranged in a rigid, isolated environment 
with high-density ionic bonds (Fig. 4e–h and Supplementary  
Figs. 18–20 and 28). Chromophore ionization accelerates ISC and 
boosts triplet-exciton formation (Supplementary Table 4), thus 
enhancing phosphorescence. Apart from blue phosphorescence, 
the generality of the strategy of confining isolated chromophores 
for efficient phosphorescence with different emission colours was 
further proved in a series of highly conjugated chromophores. A 
variation from biphenyl and 2,2′-bipyridine to naphthyl deriva-
tive changed the phosphorescence colour from green to yellow 
(Supplementary Figs. 29–31).

We next demonstrated the potential of these phosphors for infor-
mation encryption and decryption by combining an inkjet-printing 
technique (Fig. 5a). The letters of the word ‘Materials’ were 
encrypted within a sentence, which cannot be discerned by the 
naked eye under daylight or ultraviolet (UV) irradiation due to 
background fluorescence (Fig. 5b,c and Supplementary Fig. 32). 
After excitation with a 310 nm UV lamp, encrypted informa-
tion appeared in the form of long-lived blue phosphorescence.  
The recorded information was easily erased within 10 seconds 
by a purging hydrochloric acid vapour. Moreover, a series of 

quick-response codes with afterglow features were printed as car-
riers for data transformation and transfer (Supplementary Fig. 33).  
After switching off the UV light, quick-response codes gradu-
ally appeared. The encrypted website homepage was conveniently 
identified by scanning the quick-response codes with a handphone 
(Supplementary Video 2). The application of afterglow phos-
phors can be extended to fingerprint identification (Fig. 5d and 
Supplementary Fig. 34).

Beyond the above applications, the afterglow display of phos-
phors can be combined with electrical excitation. First, a display 
screen was prepared using grounded TSP powder and ethoxyline 
resin (Fig. 5e). Homogeneous afterglow was observed after stop-
page of UV irradiation, even after immersion of the display screen 
in water for two weeks (Supplementary Fig. 35). Using a circuit 
diagram, a photoelectric device of the afterglow display was fabri-
cated (Supplementary Figs. 36–38). Both steady-state and afterglow 
emission spectra electrically excited are consistent with those under 
UV excitation (Supplementary Figs. 39 and 40). Numbers from 0 
to 9 can be displayed and converted (Fig. 5f and Supplementary 
Video 3) by manipulating the direct current (Supplementary 
Table 10). Paths from A to B can be captured under afterglow 
emission guidance upon ceasing electrical excitation (Fig. 5g, 
Supplementary Table 11 and Supplementary Video 4). Moreover, 
based on afterglow display, a demo of a radar scan is achievable 
under different scan frequencies (Fig. 5h, Supplementary Table 12 
and Supplementary Video 5). The scan path was identified within 
0.5 s, demonstrating the potential of these phosphors for fast posi-
tioning and accuracy tracking.

In summary, we have developed a strategy using confin-
ing isolated chromophores for achieving high-efficiency blue or 
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deep-blue phosphorescence. Chromophore ionization enables 
a 96.5% phosphorescence efficiency and a 184.91 ms triplet life-
time. Our experimental data indicate that counterions have great 
utility in enhancing phosphorescence efficiency in the solid 
state. High-density ionic bonding to chromophores suppresses 
non-radiative transition and facilitates exciton generation, thereby 
boosting phosphorescence efficiency. This study may pave the way 
towards high-performance organic phosphors for broad future 
applications from display and lighting to data encryption and 
bioimaging.
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Methods
General procedure for the synthesis of phosphors. TSP. PMA (0.254 g, 
1.0 mmol), NaOH (0.160 g, 4.0 mmol) and deionized water (5.0 ml) were added 
into a polypropylene (PP) centrifugal tube, forming a transparent solution. Then 
the water was evaporated by heating at 50 °C (oil bath), leaving block colourless 
crystals (0.205 g, 37.5%) in the tube.

DSP. The synthesis of DSP was similar to that of TSP except for changing the 
molar ratio of PMA/NaOH to 1:2. Colourless crystals were obtained in 56.1% yield 
(0.184 g).

TPP. The synthesis of TPP was similar to that of TSP except that NaOH was 
replaced by KOH. Colourless crystals were obtained in 53.9% yield (0.258 g).

HSM. Mellitic acid (0.085 g, 0.249 mmol), NaOH (0.060 g, 1.494 mmol) and 
deionized water (2.0 ml) were added into a PP centrifugal tube, forming a 
transparent solution. Then the water was evaporated by heating at 50 °C, leaving 
block colourless crystals (0.093 g, 58.9%) in the tube.

HPM. The synthesis of HPM was similar to that of HSM except that NaOH was 
replaced by KOH, affording colourless crystals (0.078 g, 49.9%).

TNP. The synthesis of TNP was similar to that of TSP except that NaOH was 
replaced by alpha-methylbenzylamine. Colourless crystals were obtained in 47.6% 
yield (0.403 g).

Procedure of inkjet printing. PMA (2.54 g, 10.0 mmol), NaOH (1.6 g, 40.0 mmol) 
and deionized water (10.0 ml) were added to a PP centrifugal tube to prepare TSP 
inks. The solution was heated to dissolve the solute completely. After the solution 
was cooled to room temperature, TSP crystals precipitated at the bottom of the 
tube, and the top, saturated solution was the TSP ink. An inkjet printer was used to 
print TSP molecules for information encryption and decryption. Information can 
be printed on paper using two inks that are prepared by adding an equal amount 
of the TSP ink or deionized water into a black ink. Following excitation using a 
310 nm UV lamp, encrypted information was decoded through long-lived blue 
phosphorescence. The decoded information can be re-encrypted by exposing to 
hydrochloric acid for 10 seconds.

Fabrication of afterglow films for display. TSP crystals were first grounded for 
15 min. Then TSP powder (0.5 g) and ethoxyline resin (15 g) were added to a 
beaker and stirred for 30 min. After that, a curing agent (5 g) was added and stirred 
for another 5 min. The mixture was put into a mould and left standing for 24 h, 
affording a homogeneous film.
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