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on advances in the associated electronic 
devices, particularly silicon-based com-
plementary metal–oxide–semiconductor 
(CMOS) transistors. With an exponential 
increase in unstructured data connecting 
to the internet, computing speed and 
energy efficiency become challenging due 
to the speed-mismatch-induced memory 
wall between memory units and proces-
sors, also known as the von Neumann 
bottleneck. Moreover, with the impending 
end of Moore’s law[1] and the breakdown in 
Dennard scaling,[2] current transistor tech-
nology faces difficulties maintaining cell 
scaling below the 5 nm node. To address 
these issues, researchers have started 
exploring novel circuit-building blocks 
and computing paradigms, similar to 
the human brain structure and function, 
for the merits of processing-in-memory 
capacity and ultralow-power consump-

tion (Figure 1). The human brain consists of about 1011 neurons 
interconnected by 1015 synapses. When a neuron is excited, an 
action potential is produced and propagated. Action potential-
encoded information is then transmitted through a network of 
synapses almost simultaneously to other neurons. Inspired by 
the human brain, neuromorphic computing aims to perform an 
energy-efficient synaptic operation by emulating neurons and 
synapses at three different levels: i) device level (artificial syn-
apses and neurons); ii) circuitry level (device networks); iii) algo-
rithm level (learning rules and training methods). Currently, 
artificial synaptic devices are primarily built on charge-based 
CMOS chips, such as dynamic random-access memory (DRAM) 
and static random-access memory (SRAM), which require mul-
tiple transistors to perform one synaptic function. Various pro-
totypes of neuromorphic chips have been fabricated, including 
SpiNNaker, TrueNorth, Loihi, and BrainScaleS, among others.[3] 
For SpiNNaker, 1 million cores (up to 1000 neurons per core) 
based on 130 nm CMOS were used.[4] Meanwhile, the TrueNorth 
CMOS chip was made to integrate 1 million neurons and 256 
million SRAM syanpses.[5] Loihi is a multicore chip built on a 
14 nm fin field-effect transistor, which has 130 000 neurons and 
130 million synapses with 1–9 bits.[6] Other chips that display 
excellent performance include NeuroGrid, Tianjic, DYNAP-SE, 
and ODIN, as well as Braindrop that requires only 0.38 pJ per 
synaptic update.[7–12] Furthermore, these CMOS components 
are volatile and suffer from major physical limitations, such as 
moderate scalability and inefficient synaptic operation.

Unlike conventional CMOS transistors, memristors rep-
resent an emerging class of bioinspired devices that directly 

Neuromorphic computing holds promise for building next-generation intel-
ligent systems in a more energy-efficient way than the conventional von 
Neumann computing architecture. Memristive hardware, which mimics 
biological neurons and synapses, offers high-speed operation and low power 
consumption, enabling energy- and area-efficient, brain-inspired computing. 
Here, recent advances in memristive materials and strategies that emulate 
synaptic functions for neuromorphic computing are highlighted. The working 
principles and characteristics of biological neurons and synapses, which can 
be mimicked by memristive devices, are presented. Besides device structures 
and operation with different external stimuli such as electric, magnetic, and 
optical fields, how memristive materials with a rich variety of underlying 
physical mechanisms can allow fast, reliable, and low-power neuromorphic 
applications is also discussed. Finally, device requirements are examined and 
a perspective on challenges in developing memristive materials for device 
engineering and computing science is given.

1. Introduction

Modern computing systems are organized based on von Neu-
mann architectures by which data are constantly transferred 
between physically separated processing and memory blocks. 
The capacity for information processing and storage relies 
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simulate synaptic and neural functions.[13–16] Memristors can 
be analog and nonvolatile, integrating memory and logic units 
in one nanoscale device. For memristive materials, tunable and 
continuous resistance states or optical properties can be induced 
by an external stimulus (e.g., an electric, magnetic or optical 
field), and information can be stored as different states. As 
such, memristive crossbar arrays use conductance to represent 
weights in physical artificial neural networks (ANNs), enabling 
the simulation of synaptic transmission and brain dynamics.

In recent years, a number of reviews have provided a compre-
hensive summary of various synaptic and neuronal phenomena 
mimicked by memristive devices.[16,17] The operation of reported  
resistive-switching materials (RSMs) is mostly achieved 
through electrical or magnetic manipulation.[18,19] On the other 
hand, optically induced phase-change materials (PCMs) have 
been developed for photonic synapse simulation and network 
processing,[20–26] while many electrical devices can also work 
more efficiently through photonic stimulus.[27,28] However, 
it is worth noting that to the best of our knowledge, all these 
memristive devices have not been categorized in a review on 
the basis of the applied stimulus. Several reviews have focused 
on two-terminal memristive structures,[14,29] but memristive 
devices can also be classified into two-, three-, and multiple-ter-
minal systems, depending on the device configuration.

This review aims at bridging the existing knowledge gap 
by highlighting material-based solutions in the context of dif-
ferent stimuli (electronic, magnetic, and photonic) and ter-
minal systems. We firstly provide an overview of the action 
potential process, followed by a summary of brain behaviors. 
Subsequently, we discuss the main mechanisms underlying 
the synaptic transmission in various materials, explaining how 
an input induces a switching for each of these mechanisms. 
Next, we examine some characteristics of memristive materials, 
emphasizing the functions and performance of the devices, 
such as switching rate, switching ratio, power consumption, 
and endurance. Finally, we discuss the remaining challenges 
and conclude by providing a perspective on future directions 
for advancing materials, mechanisms, and algorithm design. In 

particular, we describe emerging frontiers in photonics-based 
memristors, in which much of the potential of memristors 
remains to be harnessed.

2. Synaptic Functions

Functional junctions between neurons are called synapses, 
which allow individual neurons to communicate via electrical 
or chemical signals among themselves or to non-neuronal 
cells.[30] Chemical synapses are predominant synapses in the 
nervous systems. Impulses pass via diffusion of neurotrans-
mitters that allow neurons to form circuits within the central 
nervous system and with target effector cells (Figure 2a). At a 
chemical synapse, a presynaptic neuron releases neurotrans-
mitter into a synaptic cleft connecting to a postsynaptic neuron 
that receives the impulse. Chemical synapses can be classified 
as excitatory or inhibitory synapses, depending on the type of 
neurotransmitters released. In neuroscience, synaptic plasticity 
is defined as the synapses’ ability to strengthen or weaken over 
time in response to increased or decreased activity. Since mem-
ories are generally regarded to be stored by the exceedingly 
complex neuronal networks, synaptic plasticity plays a vital role 
in controlling memory through synaptic connection.

2.1. Homosynaptic Plasticity

Homosynaptic plasticity (dubbed as Hebbian plasticity) is a 
type of localized synaptic plasticity that typically activates tar-
geted postsynaptic neurons upon specific presynaptic neuronal 
stimulation.[31] It characterizes the associative nature of synaptic 
changes, mediating the formation and refinement of neuronal 
connectivity, as well as establishing a physical foundation for 
neuronal computations. Homosynaptic plasticity encompasses 
several forms, including short-term plasticity (STP), long-term 
plasticity (LTP) (long-term potentiation/depression), and spike-
timing dependent plasticity (STDP).

Figure 1.  Milestones of research on synaptic plasticity and neuron models, as well as artificial synapses and neuromorphic computing.
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2.1.1. STP and LTP

STP reflects the dynamic activity of a synapse, typically on a 
timescale of tens of milliseconds to a few minutes (Figure 2b). 
STP participates in short-term adaptions to transient changes 
in behaviors or short-lasting forms of memory.[32] In contrast, 
LTP is characterized by long-lasting modifications of synaptic 
strength (Figure 2c).[33] Long-term depression (LTD) and long-
term potentiation (LTPot) are two forms of LTP, representing 
either persistent decrease or increase in synaptic strength.[32] 
N-methyl-d-aspartate (NMDA)-dependent LTD and LTPot gen-
erally require binding of glutamate, glycine, or d-serine for 
NMDA receptor activation.[30] Conventionally, LTPot and LTD 
can be induced by prolonged high- or low-frequency stimu-
lation, respectively, by which synaptic efficacy can be modi-
fied in a bidirectional manner. [34,35] The short- and long-term 
threshold characteristics of synaptic adoption, modulation, and 
modifications depend mainly on the functional dynamics of the 
synapse.[33]

2.1.2. Paired-Pulse Facilitation (PPF) and Paired-Pulse  
Depression (PPD)

In STP categories, when a short time interval separates two 
stimuli, the second stimulus can either boost or suppress the 
response, leading to PPF or PPD, respectively.[36] Consequently, 
upon arrival of the second stimulus, an increased or decreased 

residue in the remaining presynaptic Ca2+ concentration of the 
first stimulus may increase or decrease the number of neuro-
transmitter molecules in the synaptic cleft.[37,38] During PPF, 
the second spike can significantly increase the synaptic current, 
especially if it immediately follows the first spike (Figure  2d). 
Conversely, the second spike will decrease the corresponding 
current when a paired-pulse stimulation is applied for PPD. 
Though producing different outcomes for synaptic current, 
both PPF and PPD are affected by the interval between the two 
spikes. The increasing synaptic current ratio is inversely pro-
portional to the time interval. The PPF and PPD are critical in 
decoding temporal information of visual and auditory signals 
because they reflect the most recent spike occurrence and thus 
transform temporal information into spatial data. In visual sys-
tems, STP (PPF and PPD) can endow different retinogeniculate 
synapses with dynamically controlled properties via a presyn-
aptic train of action potentials, enriching the responsiveness 
at the temporal scale.[39] Additionally, PPF generally occurs in 
synapses with a low probability of neurotransmitter release,[40] 
while synapses with a high release probability show PPD.[41,42] 
In doing so, the systems achieve some degrees of compensa-
bility and adaptability. In short-term memory (STM), device 
states are affected by previous programming pulses within a 
time range. The device state effect is most intense at the onset 
of the pulse, but becomes weaker over time due to device decay 
to its initial state.[43] The final effect depends on the behavior of 
calcium accumulation or release in the device under external 
stimulation. Neurons with activated or suppressed synapses 

Figure 2.  Chemical synapses and various forms of plasticity. a) A chemical synapse controlling the release of neurotransmitter molecules from synaptic 
vesicles into the synaptic cleft. b–e) Different types of synaptic plasticity. b) STP, indicated by an ephemeral change of synaptic weight. c) LTP, including 
long-term potentiation (LTPot) with increased synaptic weight (black line) and LTD with decreased synaptic weight (red line). d) PPF induced by short 
interstimulus intervals. e) STDP indicated by the spike-timing window of STDP to induce potentiation or depression. d) Reproduced with permission.[37] 
Copyright 1996, The Physiological Society. e) Reproduced with permission.[38] Copyright 1998, Society for Neuroscience.
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enhance their ability to distinguish a sequence of events in 
reverse order.[44] More works of temporal information of visual 
and auditory signals were reported elsewhere.[45–47]

2.1.3. STDP

In addition to frequency, the order and temporal interval of 
stimuli between presynaptic and postsynaptic spikes can deter-
mine the features of LTPot and LTD. This form of activity-
dependent LTPot/LTD is known as STDP.[48] STDP describes 
variations in synaptic weight, which is regulated not only by 
the interval between presynaptic and postsynaptic spikes but 
also by the interspike intervals of individual neuron (Figure 2e). 
A typical example is Hebbian STDP, which exhibits Hebbian 
associated plasticity in a time-dependent manner. Specifically, 
LTPot is induced when presynaptic and postsynaptic spikes are 
separated by a short time interval (≈10 ms), whereas a reverse 
spiking order results in LTD. However, the synaptic weight 
remains unchanged when the time interval between the two 
spikes is too long.[49] Besides Hebbian STDP, there are three 
other types of STDP: anti-Hebbian STDP, symmetrical STDP, 
and visual STDP learning rule.[37,50]

2.1.4. Learning-Experience-Dependent Plasticity

Emerging evidence indicates the existence of experience-
dependent plasticity, which is the creation, modulation, and 
organization of neuron connections, mainly based on past 
experiences. For instance, in the course of such plasticity, a 
dendritic specialized for axodendritic synapses could be associ-
ated with either synapse formation (sprouting) or synapse elim-
ination (retraction). Learning experience-dependent plasticity 
that acts on impulses based on past-learned events can modify 
synaptic weights as well.[51] Moreover, Ebbinghaus described 
the learning–forgetting law, in which the stimulus strength is 
reduced with an increasing number of stimuli due to memory 
repository. Such synaptic plasticity enables neuronal networks 
to self-adapt.[52]

2.2. Heterosynaptic Plasticity

Unlike the input-specific homosynaptic plasticity occurring at 
active synapses, the heterosynaptic plasticity can be induced 
as a supplementary form of plasticity on inactive synapses.[53] 
Compared with the function of homosynaptic plasticity asso-
ciated with learning, the non-Hebbian-type heterosynaptic 
plasticity mainly plays a stabilizing role in preventing syn-
aptic adoption and neuronal firing from getting out-of-balance 
induced by positive feedback in the Hebbian-type learning. 
This necessitates the adjustment of both associative and nonas-
sociative learning by heterosynaptic plasticity. Typically, habitu-
ation and sensitization are two fundamentally different forms 
of nonassociative learning. Habituation refers to a decrease in 
the nonreinforced innate response after repeated or prolonged 
applications of a stimulus. Sensitization describes the ability of 
a strong stimulus to produce an overall increase in its response. 

While homosynaptic plasticity is usually simulated using two-
terminal devices, realization of heterosynaptic plasticity require 
three-terminal or multi-terminal memristive systems.

2.3. Biological Neuron Models

Generally, a neuron is composed of three distinctive parts: 
soma, dendrites, and axon. Neurons can be unipolar, bipolar, 
or multipolar, depending on their morphology (Figure  3a).[16] 
The cell body, or soma, is the spherical part of the neuron that 
contains the nucleus. Dendrites are branch-like extensions with 
tiny protrusions of protoplasm from the soma that retrieve 
signals from elsewhere. Axons or nerve fibers extend from 
the soma and carry impulses from the soma to other neurons 
or muscles and glandular cells. A neuron typically comprises 
many dendrites and just one axon. One can distinguish axons 
from dendrites based on their shape and size or the presence 
of Nissl bodies, the equivalent of rough endoplasmic retic-
ulum, present only in somas and dendrites. There are three 
main forms of synapses: axonal–dendritic, axonal–axonal, and 
axonal–somatic. Two parts from two different nerves form 
one synapse. The axon of one neuron is the presynaptic struc-
ture that carries input impulses. An axon, soma, or dendrites 
from another neuron can serve as the postsynaptic structure to 
receive the impulses. The synaptic cleft between the two seg-
ments is the gap, across which neurotransmitters diffuse, car-
rying either excitatory or inhibitory synaptic inputs. Upon an 
excitatory input, most neurons are depolarized, triggering an 
action potential. In contrast, upon an inhibitory input, neurons 
hyperpolarize without evoking any action potentials. A neuron 
with numerous synapses can receive both excitatory and inhibi-
tory inputs simultaneously. In practice, three models are used 
to describe neural functions: the integrate-and-fire (IF) model, 
the leaky-integrate-and-fire (LIF) model, and the Hodgkin–
Huxley (HH) model.[54,55]

In 1907, Lapicque proposed the IF model, based on an elec-
tric circuit with parallel capacitors and resistors to represent 
membrane capacitance and leakage resistance.[56] When stimu-
lation was applied to presynaptic neurons, postsynaptic excita-
tory or inhibitory currents were elicited due to local changes 
in the membrane potential. The current also increased or 
decreased with the strength of dendrite-connected synapses. 
Excitatory current can be temporally and spatially integrated, 
inducing a graded potential. An action potential forms when 
the graded potential reaches a specific threshold (Figure 3b).

The time-dependent current is derived from

d

d
m

mI t C
V t

t
( ) ( )= � (1)

which is obtained by taking the derivative of time from the law 
of capacitance, where Cm represents the membrane capaci-
tance, and Vm represents the membrane potential. Upon 
applying an input current, a corresponding membrane voltage 
will increase over time till a constant threshold Vth is reached, 
wherein a delta function spike occurs, and the voltage returns 
to its resting potential, thereafter the model continues running. 
Therefore, there is an unlimited linear increase in the model’s 
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firing frequency with an increase in input current. Rm is con-
sidered as the membrane resistance in this model because it 
cannot be the perfect insulator that was hypothesized previously

th
th

m

I
V

R
= � (2)

The input current (Ith) thus needs to exceed a certain 
threshold before the cell generates action potential. Otherwise, 
any change in potential would leak out. The observed firing fre-
quency, therefore, converges at large input currents, different 
from the earlier leak-free model with the refractory period.[57] 
However, this characteristic is not consistent with the actual 
behavior of neurons. In fact, in biological neuronal models, 
a localized graded potential shows short-term dynamics, 
resulting in a subthreshold membrane boost that leaks out 
rapidly. Therefore, the LIF neuron model was proposed by 
adding a rule that regulates spikes once the membrane poten-
tial surpasses a threshold, which mimics ion diffusion occur-
ring through the membrane when the cell is in disequilibrium. 
According to the LIF neuron model, any subthreshold mem-
brane boost leaks with time, allowing time-dependent memory 
to be implemented in neurons.

One limitation of IF and LIF models is their inability to 
implement time-dependent memory. The HH model simu-
lates the dynamic relationship between the ionic current flow 
across the cell membrane of the neuron and the cell mem-
brane potential.[58] A neuronal membrane acts as a barrier 
between the neuronal cytoplasm and the external environment 
(Figure 3c), across which a complex and dynamic ion exchange 
process occurs. Simulation of changes in spike-induced ion 
channel conduction using the HH neuron model is compa-
rable to a circuit (Figure 3d).[59] Similar to the IF model, mem-
brane depolarization is caused by dendritic inputs. In general, 
a response is generated when a stimulus changes the cell 

membrane polarity from −70 to above −55 mV, causing voltage-
gated Na+ channels to open and allowing Na+ ions to enter the 
cell. Once the Na+ channels open, the neuron depolarizes to 
a membrane potential of about +40  mV. At this voltage, Na+ 
channels close, and voltage-gated K+ channels open, allowing 
K+ ions to rapidly diffuse out of the cell. This will return the 
inside membrane potential to be negative, closing voltage-gated 
K+ channels and leading to hyperpolarization. At this stage, 
the membrane polarity briefly goes beyond −70  mV, which is 
called the refractory period. Finally, the Na+ and K+ ATP pumps 
restore the resting potential balance by pumping two K+ into 
and three Na+ out of the cell. The newly generated action poten-
tial can move down the axons and propagate through synapses 
to other neurons. During hyperpolarization, or the repolariza-
tion phase, which is the pre-reactivation phase of neurons, the 
membrane potential stabilizes at its resting potential (−70 mV). 
One factor that hinders the application of the HH model in 
ANNs, in contrast to other neuron models such as IF and LIF, 
is its complexity as a nonlinear system, along with the fact that 
it is analytically unsolvable. However, new prospects for artifi-
cial synapses and neurons may emerge through advances in 
memristive devices.[60] Therefore, the following sections intro-
duce the main concepts and the switching mechanisms behind 
memristive devices.

3. Operation Mechanism of Memristive Materials

Memristive devices are the critical functional components of 
neuromorphic computing systems. Memristive materials can be 
classified according to their mechanisms (electronics-, ionics-, 
or photonics-based), and device structures (two-terminal mem-
ristor, three-, or multi-terminal transistor), as well as the type of 
the externally applied field (electric, magnetic, or optical). These 
device types are discussed in subsequent sections.

Figure 3.  Bioinspired neuron models. a) Schematic of an action potential fired by a biological neuron. b) Integrate-and-fire neuron model. Cm, mem-
brane capacitance; Rm, membrane resistance; Vth, membrane potential; Ith, injected current. c) Schematic of a neuronal membrane. d) Hodgkin–Huxley 
neuron model, gNa: conductance of Na+ channel; gK: conductance of K+ channel; gL: leak conductance; and the associated equilibrium potential for each 
conductance is represented by a labeled battery. Cm and Ip represent the membrane capacitance and injection current, respectively. d) Adapted with 
permission.[58] Copyright 1952, The Physiological Society.
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3.1. Electric-Field-Operated Memristive Devices

In 1971, Chua predicted that there would be a fourth two-
terminal circuit element called memristor.[61] The resistance 
states of the memristor depends on the history of the current 
or voltage experienced. In 2008, HP labs reported the dis-
covery of memristors in TiOx-based two-terminal resistive 
switching devices, which experimentally established a link 
between these electronic elements and biosynapses and neu-
rons.[62] Researchers developed different kinds of materials to 
create artificial synapses and neurons. They fall into two cat-
egories, namely, memristors and neuromorphic transistors. 
For memristors, conductive filaments, phase changes and 
charge trapping are the three main operation mechanisms 
(Figure  4a–c), whereas electrolyte-gated transistors, floating-
gated field-effect transistors and ferroelectric field-effect tran-
sistors are three typical types of neuromorphic transistors. 

The working mechanisms of resistive switching devices are 
shown in Figure 4d–f.

3.1.1. Conductive Filament Mechanism

Redox reactions and ion migration induce switching when 
electric voltage is applied to a memristor. In transition-metal 
oxide-based RSMs, anions such as oxygen ions move from one 
electrode to the other when voltage is applied.[63,64] Migration 
of anions usually leads to lower resistance when a suboxide 
phase is formed. Conductive channels are formed in the 
switching materials. Anion-based filamentary switching is 
known as the valence change mechanism (VCM). The device 
switches to a low-resistance state (LRS), depending on the 
growth of filaments. When a reverse electric field is applied, 
the conductive channels are ruptured, and the device reverts 

Figure 4.  Schematics of various mechanisms underlying memristive devices: a–i) Conductive filament, electronic PCMs, charge trapping, ion migra-
tion, charge trapping in floating-gate transistors, dipole alignment, STT–MTJ, SOT–MTJ, and PCMs as optical memory systems.
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to its high-resistance state (HRS). This phenomenon was first 
observed in an undoped SrTiO3 crystal using conductive-tip 
atomic force microscopy.[65] Conduction channels were also 
revealed in a Pt/TiO2/Pt structure with TEM.[66] In addition, 
X-ray absorption spectroscopy and electron-energy-loss spectro
scopy were used for studying the composition of nanofilaments 
in several oxide compounds.[66–69] As in VCM cells, the forma-
tion or dissolution of conductive filaments results in a change 
in cation-based filamentary devices composed of active metals, 
such as Ag and Cu. As a result, an electrochemical metallization 
mechanism is responsible for this kind of memristor.

Moreover, conductive filaments can be formed via two 
growth modes based on their redox rate and ion mobility. 
Low redox rates inactivate the metal electrode, where high 
redox rates have the opposite effect. For example, oxides 
and nitrides show low redox rate and ion mobility, whereas 
sulfides, iodides, selenides, tellurides and ternary chalcoge-
nides exhibit large redox rates and ion mobilities.[70] Conduc-
tive channels of Ag/As2S3:Ag/Ag device were first observed 
in 1975.[71] Recently, an Au/SiOx:Ag/Au device was used as a 
prototype to study the dynamic switching processes.[72] An Ag 
bridge formed between the two electrodes when the voltage 
was applied via in situ TEM, due to a bipolar-electrode effect. 
The Ag cluster relaxed after removing the bias voltage owing 
to the minimized interfacial energy between the Ag nano-
particles. For the Cu dynamic filament, reactive molecular 
dynamics have been used as a computational model.[73] In 
addition, valence-change redox devices such as TaOx can show 
cation transport.[74]

3.1.2. Phase-Change Mechanism

The process of phase change in chalcogenide glass mate-
rials forms the basis of phase-change RSMs. These materials 
exhibit low or high electrical resistance, depending upon the 
crystal phase of the materials.[75–77] Usually, Joule heating 
above the melting point and passive thermal dissipation con-
vert the crystalline phase to an amorphous phase (Figure 4b). 
Electrical resistance is defined as 0 or 1 for data storing 
because of a large resistance gap between amorphous and 
crystalline states.[78] Structure disorder, carrier concentration, 
and bonding mechanisms differ between the two states.[79–85] 
Switching speed and retention time are two main character-
istics of nonvolatile memory. In PCMs, it takes 50 to 1000 ns 
to change the material from amorphous to crystalline.[86,87] 
Materials that crystallize more rapidly are needed. Growth-
dominated and nucleation-dominated materials are two such 
types. For growth-dominated materials, a single crystalline 
phase is usually created between amorphous and crystallized 
phases, such as Ag- and In-doped SbTe (Ag4In3Sb67Te26, AIST). 
On the other hand, nucleation-dominated PCMs are recrys-
tallized through the stochastic formation of critical nuclei. 
Growth and nucleation are fast in nucleation-dominated, 
phase-change RSMs, (e.g., Ge2Sb2Te5), which grow to a poly-
crystalline phase along different grain orientations.[86] Temper-
ature is the main factor controlling the speed of crystal growth 
due to the temperature dependence of the driving force and 
interfacial energy.[87]

3.1.3. Charge Trapping Mechanism in Memristors

Defect-induced charge trapping and detrapping at the electrode/
RSMs interfaces or in the bulk of the RSMs can induce resis-
tive switching in defect-rich oxides and hybrid systems.[88–91] The 
switching phenomenon is related to space charge-limited cur-
rent (SCLC) conduction, similar to that observed in Al/SiO2/Au 
diodes by Simmons and Verderber.[92] For in defect-rich oxides, 
holes or electrons from electrodes can be confined to interfacial 
traps. A charge build-up due to carrier accumulation modu-
lates the Schottky barrier in defect-rich oxides.[93] The dominant 
analog switching mechanism is deemed to be interfacial trap-
ping, characterized by a clear hysteresis.[94] One representa-
tive example is the Au/WO3/FTO device, where the existence 
of W-5d states near the Fermi level can be considered as elec-
tron traps at the electrode/WO3 interface.[94] Upon applying an 
external negative/positive electric field, the electrons could be 
trapped/detrapped at the surface states, leading to the increase/
decrease in the Schottky barrier potential and subsequently the 
HRS-to-IRS switching. By comparison, abrupt switching is usu-
ally obtained in the hybrid RSMs comprising a wide-bandgap 
polymer matrix and nanostructured materials.[95,96] Owing to 
the difference in orbital energy level, metal nanoparticles (e.g., 
Au NPs,[97] quantum dots,[98] black phosphorus,[99] and gra-
phene[100]) and small semiconducting molecules (e.g., C60[101] 
and 6-phenyl-C61 butyric acid methyl ester (PCBM)[102]) can 
act as trapping centers in the blended system. The application 
of an electric field induces a sufficient amount of electrons/
holes to be filled at the trapping sites. With increasing voltage, 
the injected carriers rapidly increase, nearly filling the traps. 
Fowler–Nordheim (FN) tunneling may occur between adjacent 
trapping centers, switching the device from the initial HRS to 
LRS.[103] An opposite voltage bias extracts the trapped carriers, 
switching the device back to the HRS. In the HRS, the charge 
transport behavior follows classical trap-controlled SCLC, which 
comprises three regions: an initially Ohmic region (I  ∝ V), a 
Child’s law region (I ∝ V2), and the steeply rising region of cur-
rent (I  ∝ Vn, n > 2).[104] Specifically, nanoparticle-incorporated 
hybrid memristors usually exhibit bipolar switching,[105] tristable 
switching,[100] or negative differential resistance.[106,107]

3.1.4. Mechanisms in Neuromorphic Transistors

Hardware implementation of synaptic functionalities using 
transistors by Mead and co-workers can be traced back to the 
1990s.[108] Several CMOS transistors are required to build one 
synapse because of their volatile working principle. However, 
there are significant challenges associated with design com-
plexity and low energy efficiency in large-scale integration. In 
contrast, neuromorphic transistor refers to a three-terminal, 
thin-film transistor that exhibits a certain degree of non-
volatility. It combines the architecture superiority of control 
terminal (gate) and transduction terminals (source–drain), and 
the resistance tunability of memristive devices.[109] As a result, 
it is possible to precisely record analog weight updates, such 
as the gradual resistive changes, in a tightly coupled fashion. 
Typical neuromorphic transistors include electrolyte-gated tran-
sistors (EGTs), floating-gated field-effect transistors (FETs), and 
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ferroelectric field-effect transistors (FeFETs). Their mechanisms 
are introduced below.

Ion Migration in Electrolyte-Gated Transistors: EGTs employ 
electrolytes as the gate dielectric and utilize coupled ionic–
electronic features to modulate the channel conductivity of the 
device.[110] Memristive devices usually utilizes two main types 
of EGTs, which depends on the electrolyte ions permeability 
of the semiconductor channel.[111] An electrolyte-gated field-
effect transistor is impermeable to ions, and the gate voltage 
is formed at the electric double layer between the channel and 
the electrolyte, modulating the channel current (Figure 4d).[112] 
An electrochemical transistor (ECT) is ion-permeable and 
modulated by electrochemical doping/dedoping processes after 
injecting ionic species into the redox-active channel material. 
Compared to ECTs, EGTs hold greater potential for neuro-
morphic implementation, with advantages of ultralow-voltage 
operation,[113] global regulation,[114] lateral coupling ability, and 
multiple-terminal configuration.[115] The kHz operation speed 
of EGTs is limited by ion drift and diffusion.

Charge Trapping in Floating-Gated Field-Effect Transistors: 
Floating-gated FETs incorporate chargeable dielectrics as charge 
storage mediums, including discrete metal nanoparticles,[116] 
2D materials,[117] inorganic semiconducting nanostructured 
materials,[118] continuous polymer electrets, and small mole-
cules.[119–121] Charge trapping occurs at floating-gates or semi-
conductor/dielectric interface (Figure  4e). Upon applying a 
gate voltage to the gate electrode, electrons/holes are injected 
into the floating-gates via direct tunneling or FN tunneling. 
These trapped charges modulate the carrier distribution and the 
channel conductance. A blocking, tunneling dielectric layer ena-
bles nonvolatile storage of the trapped charges. Applying a gate 
voltage with reverse polarity, tunneling, or recombination with 
the injected opposite charges releases the trapped charges back 
to the channel. However, the tunneling process usually requires 
a large voltage (>10 V) and slow programming (>1 ms), limiting 
the programming efficiency.

Dipole Alignment in Ferroelectric Field-Effect Transistors: 
FeFETs can be used to make oriented-dipole memory by spon-
taneous polarization switching of ferroelectric materials upon 
electrical input (Figure  4f).[122–131] The carrier concentration of 
FeFETs could be precisely controlled by the gate voltage, ena-
bling multilevel FeFET channel conductance for neuromorphic 
computing.[132] In contrast to floating-gated FETs, FeFETs dis-
play faster operation speed (ns range), lower operation voltage 
(<6  V), higher endurance, and less variance in the weight 
update curve.[133] However, FeFETs require thick ferroelectric 
films (200–500  nm) to achieve long retention time and large 
memory windows.[134]

3.1.5. Theoretical Modeling of Memristors

Mathematical modeling can improve the understanding of 
the memristor’s function, while providing design principles 
for future memristive materials. By defining the relationship 
between magnetic flux and the amount of charge based on 
Chua’s model,[61] Strukov et  al. reported the first memristor 
using a Pt/TiO2−x/Pt device and modeled the nonlinear ion drift 
of oxygen vacancies.[62] Despite the achievement, fundamental 

electrodynamic limitations remain. HP Labs then proposed to 
include the nonlinear dependency between the voltage and the 
internal state derivative into the nonlinear ion drift model.[135] 
Other models have been reported to improve accuracy at work, 
such as the exponential model,[136] the Stanford model,[137,138] 
and the filament dissolution model.[139,140] Most of these models 
were based on oxides (e.g., HfOx, TiOx, TaOx) with variable 
parameters, such as the distance between conductive filaments, 
the temperature, the ion concentration, the diffusivity, and the 
activation energy.[137–140] Theoretical models such as synaptic 
models and diffusive models for synaptic behavior evaluation 
have also been established in recent years.[72,141] The diffusive 
model suggests that materials (e.g., MgOx:Ag, SiOxNy:Ag, and 
HfOx:Ag) can have a substantial relaxation time because diffu-
sion of metal ions eventually forms conduction channels.[142]

3.2. Magnetic-Field-Operated Memristive Devices

Besides electrical memristors, certain magnetic devices have 
demonstrated the ability to vary their resistance with a change 
in the magnetic field. Instead of electron or ion transport, 
the resistance of such spintronic memristors depends on the 
change in magnetoresistance state of the device. Wang et  al. 
reported their theoretical investigations of magnetic tunnel 
junctions (MTJ) and other magnetic memory designs, demon-
strating memristive behavior using probing frequencies higher 
than the magnetization dynamic time scale.[143] Their observa-
tions, coupled with later experimental evidence of spintronic 
memristors, spurred further research into mimicking brain 
processes using spintronic devices. These devices could be cat-
egorized in two regards: first, the mechanism in which the local 
magnetization is manipulated and second, the mechanism 
behind the switching-induced resistance change.

3.2.1. Spin Transfer Torque (STT) and Spin–Orbit Torque (SOT)

STT MTJ uses the STT effect to induce a magnetic state change 
in the free layer (Figure 4g). Upon electric current introduction 
through the MTJ, the magnetic orientation of the fixed layer 
spin-polarizes the electrons that pass through it. These elec-
trons then pass through the free magnetic layer, transferring 
their spin angular momentum and changing the free layer’s 
magnetic orientation to that of the fixed layer.[144] Thereafter, 
when an electric current of the opposite direction is applied, 
the minority of electrons in the fixed layer, which has a spin 
polarization opposite to that in both layers, is reflected toward 
the free layer, switching its orientation antiparallel to the fixed 
layer. Another method of changing the magnetic state is by uti-
lizing the SOT effect. Through addition of a high spin–orbit 
coupling material, for example, a heavy metal layer (Figure 4h), 
the magnetization state of the adjacent material can be manipu-
lated.[145] Unlike in STT, the current passes through the lower 
resistance heavy metal layer and not through the higher resist-
ance ferromagnetic layers, thus utilizing less energy. Srinivasan 
et al. applied an MTJ–heavy metal heterostructure to a crossbar 
architecture of stochastic synapse and neuron.[146] They 
achieved three orders of magnitude lower energy consumption 
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than the CMOS-based designs. Similarly, by adding a heavy 
metal layer adjacent to an MTJ domain wall magnet to form an 
MTJ–metal heterostructure, Sharad et al. managed to increase 
the domain wall velocity of their spin neuron under the same 
current density due to the Spin Hall effect (SHE).[147] This also 
meant that the contemporary spin neuron design could achieve 
a fixed switching time using a lower current density. Therefore, 
they demonstrated superior energy efficiency and switching 
time using the spin neurons compared to the CMOS-based 
counterpart.

3.2.2. Magnetization Switching (MS) and Domain Wall 
Motion (DWM)

After STT- or SOT-induced switching occurs, the resulting 
resistance change in the MTJ is achieved via two main 
mechanisms, MS and DWM. MTJs that undergo magneti-
zation switching exist in two states: a high-resistance, anti-
parallel (AP) magnetization state, where the magnetization 
directions of the two layers are opposite, and a low-resistance 
parallel (P) state, in which the magnetization of the two layers 
is perfectly aligned. Therefore, based on the direction of the 
current applied, an MTJ exists as either the P or AP state, cor-
responding to high- or low-conductance, respectively. However, 
a fundamental weakness in MS devices is the lack of inter-
mediate stable states. On the other hand, devices that utilize 
domain wall motion can have multiple stable intermediate 
states within one device.[148] Wang et  al. demonstrated mem-
ristive phenomena in both thin-film elements and spin valves 
with domain wall motions.[143] However, such phenomena have 
also been demonstrated in MTJs, and many artificial synapses 
and neurons developed have been based on MTJ devices.[149–152] 
These MTJs, like those used for magnetization switching, are 
also composed of two ferromagnetic layers, sandwiching an 
oxide tunneling layer. The main difference is the length of the 
free layer, which is longer than the other two layers, with the 
two ends of the layers having opposite spin polarizations. The 
domain wall is the space that separates the parts of the free 
layer with opposite spin polarization. As spin-polarized current 
flows through the device, the domain wall can move in either 
direction, depending on the direction of the current. The free 
layer with notches acts as points of local energy minimum also 
called pinning sites. When the external stimulus is removed, 
the domain wall stabilizes at one of these pinning sites, and 
the resistance depends on the domain wall position in the free 
layer.

3.3. Optical Field-Operated Memristive Devices

Optical field-operated memristive devices can be divided into 
two classes, optoelectronic and all-photonic synaptic devices. 
Optoelectronic memristive devices typically operate through 
photovoltaic effect-mediated Schottky barrier, photovoltaic 
effect-induced formation/annihilation of conductive filaments, 
photogating effect, and photoinduced chemical reaction, or 
conformation change.[153] In contrast, photonic data storage 
significantly improves the performance of existing computing 

architectures through latency reduction in electrical memo-
ries and the potential elimination of optoelectronic conver-
sions.[154,155] This is achieved via optical pulse-driven phase 
transitions in PCMs, which form the basis of all-photonic 
memory. It is integrated with waveguides on the chip, opening 
the possibility of photonic memory applications (Figure 4i). The 
transmission of light changes when excited by optical pulses 
of varying amplitudes, widths, frequencies, and time inter-
vals, which simulates different types of memory. PCM-based 
Photonic memories contain both volatile and nonvolatile types. 
Before 2015, photonic memory had been volatile until Ríos 
et al. reported a multilevel nonvolatile photonic memory based 
on PCMs.[20,156–160] They then obtained eight weight levels in a 
single device using optical near-field effects, featuring single-
shot readout and low switching energies (13.4 pJ) at a speed of 
1 GHz. These devices provide a new pathway to overcoming the 
von Neumann bottleneck, and they also offer a unique view of 
all-photonic memory and computing.

4. Memristive Materials

There are different classes of memristive materials that can 
simulate synaptic functions, with some representative mate-
rials listed in Table 1. The two big categories are inorganic and 
organic materials, each having their strengths and weaknesses, 
as described below.

4.1. Materials for Electronic Synapses and Neurons

4.1.1. Inorganic Materials

Inorganic material-based devices with high stability, short 
switching time, and high endurance are essential materials 
for memristive devices. In the inorganic material family, metal 
oxide semiconductors, 2D materials, graphene, and PCMs are 
the primary members (Figure 5).[14,26] Metal oxide semiconduc-
tors are usually used as a medium layer between two metal 
electrodes to provide memristive properties. 2D material-based 
devices are highly promising for applications as memristors 
and memtransistors because of their fascinating physical and 
chemical properties. For example, owing to its unique elec-
tronic properties, graphene can provide many functions in 
memristive devices, such as the bottom electrode, the dielectric 
layer, and the ion-blocking layer. Moreover, PCMs provide new 
opportunities for power-efficient memristive devices because 
they can achieve nanosecond switching.

Metal Oxide Materials: Metal oxide semiconductors with 
highly recognized switching properties are core components 
of two-terminal memristors.[161,162] Among these materials, 
HfOx-based devices have shown superior switching speed and 
endurance, while retaining data reliably.[163] Yu et al. fabricated 
HfOx/AlOx-based resistive switching memory, which attained 
sub-picojoule power consumption per operation in two-ter-
minal, solid-state electronic synapses for the first time.[164] By 
tuning the pulse amplitude, a linear variation in resistance was 
obtained within each time slot, enabling increased operational 
efficiency of the device. Other advantages of oxide materials 

Adv. Mater. 2021, 33, 2006469

 15214095, 2021, 46, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202006469 by N
ational U

niversity O
f Singapo, W

iley O
nline L

ibrary on [06/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



© 2021 Wiley-VCH GmbH2006469  (10 of 33)

www.advmat.dewww.advancedsciencenews.com

include satisfactory switching ranges (>3 orders of magnitude), 
large endurance cycles (≈105), low operation voltage (<3 V), and 
fast switching speed (≈10 ns).

Wang et  al. reported an amorphous α-InGaZnO (IGZO) 
memristor (Pt/α-IGZO/Pt)-based artificial synapses where ion 
diffusion is reduced by an oxygen concentration gradient.[165] 
Conductance increased upon applying a positive bias to IGZO, 
causing oxygen ions to move toward the top electrode. Then, 

the conductance of the device was reduced by using a negative 
voltage because oxygen ions moved back to the bottom elec-
trode. In addition, STDP and spike-rate-dependent plasticity 
(SRDP) were obtained by tuning pulse width and amplitude. 
Moreover, various learning and experience properties have 
been achieved in the IGZO device. On the other hand, when 
IGZO is used as a channel layer in three-terminal transistors 
where InZnO is used as source and drain, low spike-power 

Table 1.  Memristive materials for synaptic functions.

Type Materials Synaptic plasticity Mechanism Power consumption/
operation conditions

Terminal 
number

Retention time Endurance 
[cycles]

Switching 
ratio

Ref.

Inorganic materials 
for electronic mem-
ristive devices

HfOx/AlOx STDP Filamentary (VCM) 6 pJ per operation 2 – 105 >105 [164]

InGaZnO Learning experience-
dependent

Oxygen ion 
migration

5 V 2 105 s – – [165]

SiGe Potentiation and 
Depression

Ag filament ≈4 µW – 48 h (85 °C) 106 104 [270]

SiOxNy:Ag PPF, PPD, SRDP 
and STDP

Ag filament 0.75 V 2 1.2 s 106 106 [72]

Ta2O5−x/TaOy LTP; STDP oxygen vacancy 
migration

≈1 V 2 500 ns >100 – [173]

MoOx/MoS2 and 
WOx/WS2

STP, LTP Ion vacancy 
migration

10 nW 2 104 s >104 106 [182]

MoS2 LTP, LTD, STDP, 
heteroplasticity

Ionic transport 0.143 mW µm−2 Multiple 25 h 475 102 [191]

Au/MoS2 Heteroplasticity Ion migration ≈0.5 µW 3 7 × 103 s >103 105 [196]

Black 
phosphorus

LTP (LTPot/LTD), 
STDP

Charge trapping 20 V Multiple Hundreds of 
seconds

– – [210]

Ge2Sb2Te5 IF Phase change 5 pJ or 120 µW 2 – 109 – [217]

Organic materials 
for electronic mem-
ristive devices

PEDOT:PSS STP, LTP and PPF, 
PPD

Ion migration 10 pJ 10−3 µm2 3 25 h – – [123]

PDPP STP and LTP Ion migration 10–100 fJ per operation 3 – – 108 [229]

BTPA-F/EV(ClO4) SRDP, STDP, 
PPF,PTP

Redox reaction 1 V 2 >300 s 102 – [231]

Materials for mag-
netic memristive 
devices

FM/MgO/FM LIF STT induced MS/
DWM

18 fJ per operation 3 – – – [243]

FM/MgO/FM PHP SOT induced MS/
DWM

311 nW (neuron) 1.9–7.7 
nW (synapse)

3 – – 2.5 [232]

Materials for pho-
tonic memristive 
devices

ZnO1–x/AlOy STP, LTP, PPF Charge trapping 0.072 mW cm−2 
(UV light)

2 103 s 103 ≈104 [252]

Gallium 
lanthanum 
oxysulphide

EPSP, IPSP, LTP, 
LTD, STDP

Phase change 58–150 mW (532 nm) – ≈60 s – – [253]

ITO/Nb:SrTiO3 PPF Charge trapping 10–30 mW cm−2 
(blue light)

2 > 100 s 30 – [254]

In2O3/ZnO STP, LTP, PPF Charge trapping ≈0.2 nJ 2 >20 s – – [255]

STP, short-term synaptic plasticity with broad timescales; LTP, long-term synaptic plasticity with broad timescales; LTPot, long-term potential; PPF, paired-pulse facilita-
tion; PPD, paired-pulse depression; STDP, spiking time-dependent plasticity; SRDP, spike-rate-dependent plasticity; PHP, probabilistic Hebbian plasticity; EPSP/IPSP, 
excitatory/inhibitory postsynaptic potential; IF, integrate-and-fire; LIF, leaky-integrate-and-fire; DWM, domain wall motion; FM, ferromagnetic materials; MS, magnetization 
switching; MTJ, magnetic tunnel junction; STT, spin transfer torque; SOT, spin–orbit torque; VCM, valence change mechanism; PEDOT:PSS, poly(3,4-ethylenedioxythiop
hene):poly(styrene sulfonate); PDPP, diketopyrrolopyrrole–terthiophene donor–acceptor polymer; BTPA-F, triphenylamine-containing polymer; EV(ClO4), ethyl viologen 
diperchlorate. “–” means that no related information.
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consumption of ≈0.23 pJ and EPSC were achieved. A het-
erostructured synaptic memristor comprising an oxygen-rich 
IGZO layer and an oxygen-deficient HfO2 film has also been 
fabricated.[166] PPF was obtained where the current was 
increased by the second pulse instead of the first pulse. Fur-
thermore, when an input pulse was applied more frequently, 
the forgetting rate of the device decreased, which is referred 
to as SRDP. Like the mechanism of the two-terminal device, 
the conductance is affected by the oxygen concentration at the 
interface of the IGZO layer. This mechanism could also explain 
SRDP, STP, and LTPot behaviors in the IGZO memristor.

Other binary transition metal oxides can also be used in 
anionic devices to demonstrate the high controllability and 
reproducibility between HRS and LRS.[167] Niu et al. fabricated 
a TiN/Ti/HfO2/CoSi2-based memristor with a silicon nanotip, 
where conductive filaments were confined due to the limited 
amount of oxidized Ti and CoSi2.[105] No significant variations 
in the resistances of LRS and HRS were observed because 
oxygen vacancies were aligned along the same conductive fila-
ment path. The properties of electronic synapses were changed 
due to the size and number of conductive filaments. Another 
type of HfO2-based resistive memory devices demonstrated 
that output spikes can be generated when input accumulation 
exceeds the critical value. In addition, weakly conductive fila-
ments induced by a few oxygen vacancies could be simulated by 
a Poole–Frenkel analytical model.[168] Furthermore, Wang et al. 
modulated the compliance current to change the conductive 
filaments’ physical properties in a Pt/FeOx/Pt structure. With 
increasing compliance current, the shape of conductive fila-
ments became wider without the I–V curve overlap.[169] Mean-
while, the retention performance is enhanced with increasing 
compliance current. Al/Al2O3/NbxOy/Au double-barrier mem-
ristors were fabricated by Hansen et al., in which an interfacial 
reaction resulted in a change of resistance. Amorphous Al2O3 
and NbxOy function as a tunnel barrier and an ionic conductor, 
respectively.[170] Confinement of oxygen vacancies in NbxOy and 
Al2O3 layer creates a gradual switching. Moreover, HH neuron 
functions can be realized in NbO2 Mott memristor devices.[171] 
The architecture and basic I–V curves of the devices are shown 
in Figure  6. The voltage response under different threshold 

voltage inputs showed that only a superthreshold induced an 
action potential. Under different spiking inputs, experimental 
and simulated voltage behaviors exhibited corresponding 
voltage inputs, mimicking other spiking profiles.

Also, Wang et  al. demonstrated conductive filament tuning 
by adding a SiO2 layer at the TiN/TaO interface, which acts 
as an ion diffusion limiting layer.[172] Due to the dense SiO2 
microstructure layer, low energy consumption was also real-
ized. The Pt/TiN/SiO2/TaOx/Pt structure was then fabricated 
in a crossbar structure, resulting in many oxygen vacancies in 
the TiOx layer for conductive filaments and the TiN layer stored 
oxygen. Moreover, an increasing linear trend was observed in 
potentiation and depression curves because oxygen vacancies 
were attracted to the SiO2 layer, causing oxygen ion drift from 
the TaOx to the SiO2 layer. The optimal switching with a high 
on/off ratio and a low nonlinearity was obtained using 1 nm 
SiO2 layer. Biological synapse behavior such as STDP could also 
be realized in this device. Kim et al. simulated Ca2+ dynamics 
with Pd/Ta2O5−x/TaOy/Pd oxide heterojunction memristors.[173] 
Meanwhile, other phenomena such as behaviors of STDP, 
potentiation, and depression could be achieved in secondary-
state variables without pulse programming.

IF artificial neurons can be constructed by including SiO2 
in the switching layer. A Ag/SiO2/Au device was connected to 
a resistor, followed by a parallel attachment to a capacitor.[174] 
In this circuitry, four critical neuron functions, termed all-
or-none spiking, threshold-driven spiking, refractory period 
and strength-modulated frequency response, were demon-
strated. Vanadium oxide (VO2) can also be used as an artificial 
neuron. Lin et al. developed an artificial neuron that possesses 
IF and postfiring refractory period characteristics under low 
voltage (0.8  V).[175] Moreover, Yi et  al. demonstrated 23 types 
of biological neuronal behaviors using scalable VO2 active 
memristors.[176]

WO3−x-based memristors exhibited excellent retention 
and switching ratios (≈105).[177] Bienenstock–Cooper–Munro 
learning rules were investigated in Pt/WO3−x/W second 
memristors, demonstrating a typical threshold-sliding effect, 
depending on learning history.[178] Moreover, Huang et  al. 
developed quasi-Hodgkin–Huxley neurons with LIF functions 

Figure 5.  a–d) Representative inorganic materials and corresponding memristive device structures: a) metal oxide semiconductor; b) 2D materials;  
c) graphene; d) phase-change materials. Right part of (b): Adapted with permission.[196] Copyright 2019, The Authors, published by Springer Nature. 
Right part of (c): Reproduced with permission.[201] Copyright 2015, American Chemical Society. Left part of (d): Adapted with permission.[26] Copyright 
2019, Springer Nature. Right part of (d): Reproduced with permission.[75] Copyright 2012, American Chemical Society.
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using W/WO3/poly(3,4-ethylenedioxythiophene):polystyrene 
sulfonate/Pt devices. Proton migration contributes to resistive 
switching by which the efficiency and accuracy of neuromor-
phic computing is improved upon hyperpotentiation, leading 
to the first demonstration of a quasi-HH neuron with LIF 
function.[179]

2D Materials: In recent years, 2D nanomaterials have 
emerged for synapse simulation and neuromorphic com-
puting.[180,181] Transition metal dichalcogenides (TMDCs) MX2 
(M = Mo, W; X = S, Se) are typical materials for memristors and 
nonvolatile transistors. For sandwiched structures, different 
conductors (e.g., Ag, Au, Cu, and graphene electrodes) are used 
as the top and bottom electrodes. For example, MoOx/MoS2 
and WOx/WS2 heterostructures between two silver electrodes 
showed modulated electrical resistance from 102 to 108  Ω and 
low operation voltages of 0.1–0.2 V (Figure 7).[182] A gradient of 
ion vacancy concentration was created through the device at dif-
ferent depths. STP, LTPot, and binary switching were demon-
strated through charge trapping and detrapping near the Ag/
MoOx interface. For all Au electrodes, ultrathin vertical TMDC-
sandwiched memristors showed low ON-state resistance 
(<10 Ω) at a high frequency of 50  GHz and a high switching 
ratio (>104) due to a point-defect mechanism.[183,184]

Moreover, an operating temperature (340  °C) higher than 
the conventional metal oxide memristors (200  °C) has been 

achieved by sandwiching few-layer MoS2 memristors between 
graphene layers.[185] Through in situ scanning transmission 
electron microscopy, a high density of sulfur vacancies was 
observed in these memristors in the ON-state, and oxygen ions 
are filled in the sulfur vacancies in the OFF-state. Conversely, 
due to Cu ion diffusion, bilayer MoS2 memristors sandwiched 
between Cu and Au electrodes achieved low operation voltages 
(≈0.2 V) and also demonstrated STDP in 2D memristors for the 
first time by altering the pulse patterns.[186] To realize large-area, 
flexible and printable neuromorphic circuits, research has been 
conducted on solution-processed 2D materials. For example, 
vertical memristors and memcapacitors based on solution-pro-
cessed 2H and 1T′ MoS2 films can work at low global fields of 
≈10 kV cm−1.[187,188]

In principle, memristors are two-terminal devices with 
varying resistance, which cannot satisfy the need of multi-
terminal simulation for higher-order synaptic plasticity. 
Hence, combining memristors and transistors in the form 
of memtransistors may solve the problem. Unlike traditional 
thin-film transistors, memtransistors offer both drain- and gate-
tunable nonvolatile memory functions. These were first real-
ized using silicon and metal oxide synaptic transistors.[189] For 
2D materials, channel gate-tunable memristive switching was 
observed in substoichiometric monolayer MoS2 devices with 
individual grain boundaries.[190] Subsequently, multi-terminal 

Figure 6.  HH axon realized in NbO2 Mott memristors. a) Schematic of the circuit diagram. b) Experimental and simulated I–V curves of the device. 
c–f) Voltage responses under pulsed excitations at different thresholds. g) Experimental and simulated voltage behaviors under different spiking inputs. 
a–g) Reproduced with permission.[171] Copyright 2013, Springer Nature.

Adv. Mater. 2021, 33, 2006469
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memtransistors of polycrystalline MoS2 were fabricated,[191,192] 
in which the open architecture of the 2D channel further ena-
bled multi-terminal heterosynaptic plasticity (Figure  8).[191] 
MoS2 defects were moved under a bias voltage, driving resis-
tive switching through variation of the Schottky barrier height. 
This mechanism was revealed through in situ scanning probe 
microscopy, cryogenic charge transport measurements, and 
device modeling. LTPot and LTD were mimicked by repeating 
1 ms of positive- and negative-bias pulses. Furthermore, STDP 
was observed by positive and negative paired pulses with a time 
interval, analogous to the response times of biological syn-
apses.[193,194] Wang et al. extended research on this three-terminal 
device, achieving a tenfold decrease in operating voltage through 
smaller grain boundary sizes and ultrathin dielectrics.[195]

Recently, another example of simulating heterosynaptic plas-
ticity was developed in the 2H-1T′ phase transition of MoS2 
memtransistors (Figure  9).[196] The I–V curve changed from 
nonlinear and asymmetric to linear and symmetric after lithi-
ation due to the interfacial formation of the metallic 1T′ phase 
and the Ohmic contacts. Meanwhile, good device controllability 
with low variability has been achieved compared to conven-
tional memristors involving defect doping and filament for-
mation.[197,198] In biological systems, heterosynaptic plasticity 
represents synaptic competition and cooperation. This usually 
occurs during intense postsynaptic activities caused by a con-
nected, activated presynaptic neuron that triggers diffusion of 
synaptic-related proteins in the postsynaptic neuron. Synaptic 

competition can be mimicked by two neighboring devices 
sharing a single electrode G in-plane. In this structure, regions 
of electrodes (A and B) and the interfacial area (G) represent 
presynaptic and postsynaptic dendrites, respectively. The ini-
tial process corresponds to Li+ ion accumulation in the region 
under electrode G. Then, negative pulses are sequentially 
applied to terminals A and B, resulting in a greater accumu-
lation of Li+ ions and more pronounced variance in conduct-
ance in the first device than the other one. It simulates the 
synaptic competition behavior of biological systems because the 
activity of other synapses within the same dendrite is reduced 
when a synapse undergoes potentiation. In addition, synaptic 
cooperation has been realized in this device. Li+ ion-induced 
memristive effects offer multiple advantages, such as better 
controllability, lower power consumption, and localized ionic 
coupling in synaptic devices of a network. 2D materials based 
devices have also been developed for sound localization and 
audiomorphic computing due to their local thermal effects and 
weak electrostatic screening.[199,200]

Graphene: Graphene is a 2D material comprising a single 
layer of carbon arranged in a honeycomb lattice, which can 
also be used in artificial synapses. It can serve as a bottom 
electrode, a dielectric layer, and also as an ion-blocking 
layer.[201–206] For instance, an artificial synapse with multilevel 
regulatable plasticity was first realized in ambipolar, twisted-
bilayer, graphene-based synaptic transistors. Excitatory, inhibi-
tory, and STDP properties were obtained in this single device 

Figure 7.  STP and LTP properties of 2D MoS2-based artificial synapses. a) Structure and optical image of an Ag/MoOx/MoS2/Ag device. b) STP and  
c) LTP behaviors under different pulse intervals. a–c) Reproduced with permission.[182] Copyright 2015, Springer Nature.

Adv. Mater. 2021, 33, 2006469
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by changing the bottom gate voltage. Moreover, flexible neu-
romorphic devices based on graphene oxide electrolyte films 
have shown both spatial and temporal modes. Graphene oxide 
can also act as a solid-state ionic conductor in transistors with 
a combination of indium zinc oxide semiconductors, enabling 
controlled ion transport.[207] A high current ON/OFF ratio (106) 
and a low subthreshold slope (≈100 mV dec−1) were obtained in 
this device. Similarly, in-plane diffusion of Li+ ions in graphene 
synapses allows low-power (<500 fJ per event), multistate 
memory (>250 states). In nanoscale, the power consumption 
of one switch was lowered to 4 aJ at 10  MHz.[208] Lateral con-
tacts involving graphene edges in memristors also enabled 3D 
architectures of memory and logic gates.[209]

Other 2D materials can also serve as hosts for memristive 
devices. Tian et  al. demonstrated a black phosphorus-based 
synaptic device by utilizing the in-plane, anisotropic elec-
tronic properties of the phosphorus.[210] The charge transfer 
between the 2 nm native oxide of the black phosphorus and 
its channel enables LTPot/LTD and STDP as well as a simple, 
compact heterogeneous axon-multisynapse network. Both 
volatile and nonvolatile resistive switching conditions were 
achieved simultaneously in few-layer, hexagonal boron nitride 
(hBN), emulating STP, LTPot, and STDP synaptic behav-
iors. The researchers showed fast (≈200 µs), stable relaxation 

over 500 cycles. They argued that the pulse voltage is a more 
important factor influencing potentiation than the pulse time/
interval, with a 600 pW power consumption per transition in 
the volatile region. In addition, memristor-based hBN and elec-
trochemically active metals (Cu or Ag) can support metal ion 
diffusion through point defects.[200,211,212]

PCMs: PCM-based synapses with nanoscale dimensions and 
low energy consumption (≈pJ) provide opportunities for power-
efficient neuro-inspired computing. Different synaptic proper-
ties can be obtained by varying input pulse parameters, such 
as amplitude, length, and spacing. STDP was accomplished 
in a single PCM cell synapse.[75] In addition, large-scale neural 
networks and spiking neural networks (SNNs) can reduce 
the power needed for visual pattern extraction and recogni-
tion.[213–216] For example, by implementing a PCM-based hybrid 
hardware–software neural network, the classification of MNIST 
was completed with a 100-fold decrease in energy consump-
tion.[214] On the other hand, PCMs can simulate IF neurons 
through the low conductance of the amorphous state, which 
can be set as the neuronal membrane potential (Figure 10).[217] 
Neuronal firing occurs when a highly recrystallized phase 
reaches a threshold conductance. A melting voltage pulse then 
resets the neuron. By changing the pulse amplitude, width, 
and frequency, the rate of phase-change neuronal firing can 

Figure 8.  Heterosynaptic plasticity in multi-terminal polycrystalline MoS2 devices. a) ID–VD curve of a monolayer MoS2 domain. b) I24–V24 curve before 
and after applying voltage between terminals 2 and 4. c) LTPot and LTD properties with 30 and −30 V pulses. d) PPF properties displayed under 40 and 
−40 V pulses. a–d) Reproduced with permission.[191] Copyright 2018, Springer Nature.

Adv. Mater. 2021, 33, 2006469
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be modulated. Phase-change neurons are ideal for completing 
complex tasks, for example, detecting temporal correlation in 
parallel data streams with the help of plastic synapses.[217] Fur-
thermore, crystallization processes enable the stochasticity 
of PCM-based neurons, which can be modulated by varying 
amorphous topology and chemical bond strength. For example, 
the crystallization rate increases from ns to ms, and the neu-
ron’s firing rate changes orders of magnitude by adding Sc 
into Sb2Te3. This is accomplished by suppressing stochasticity, 
yielding a higher nucleation rate, because strong ScTe bonds 
stabilize crystalline precursors under temperature variation.

Other Inorganic Materials for Electronic Memristive Devices: Ag 
nanoparticles: Ag nanoparticles can improve the performance 
of resistive switching memory by reducing power consump-
tion. For example, dispersed Ag nanoparticles facilitate filament 
formation. TaN/Al2O3/ZnO/ITO devices with dispersed Ag 
nanoparticles were reported as an artificial synapse, in which 

HRS and LRS were obtained in I–V sweeps and potentiation/
depression behaviors were observed.[218] Notably, there is great 
potential for polymer–metal nanoparticle composites as mem-
ristors and artificial synapses due to their versatile functionality, 
flexibility, low cost, nontoxicity, and biocompatibility. Metal and 
different capping ligands determine resistive switching char-
acteristics of organic–metal nanoparticles. For example, Zhou 
et  al. fabricated an Au@Ag core–shell nanoparticle composite 
by increasing charge trapping and migration relative to an indi-
vidual component.[219] Electrons are trapped by Au@Ag nano-
particles when a positive voltage is applied, which corresponds 
to LRS after full trapping, whereas electron detrapping occurs 
upon application of a negative bias. A more effective filament 
forms because dispersed Au@Ag nanoparticles act as separate 
nucleation centers that enhance nucleation of Ag atoms. The 
device also showed PPF, SRDP, and STDP synaptic behaviors 
(Figure  11a–c). Moreover, Ag nanoparticles can simulate the 

Figure 9.  Experimental implementation of synaptic competition. a) Schematic graph of synaptic competition and heterosynaptic cooperation function-
ality. b–e) Experimental implementation of synaptic competition in LixMoS2 devices using two adjacent devices. b–e) Reproduced with permission.[196] 
Copyright 2019, The Authors, published by Springer Nature.

Adv. Mater. 2021, 33, 2006469
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dynamic process of Ca2+ in biosynapses (Figure 11d,e).[72] A dif-
fusive memristor was achieved when it was embedded in a SiOx 
matrix. Learning behavior, PPF, and PPD were also observed 
in this device due to dynamic contraction and extension of Ag 
nanoparticles (Figure 11f,g).

Perovskite: Perovskite oxides such as SmNiO3 (SNO), BiFeO3 
(BFO), SrTiO3, and SrRuO3 can be utilized for memristors and 
memristor-based synapses, in which oxygen ions aggregate 
locally at the interface.[220–224] STDP curve was observed in a 
Pt/BFO/Au structure by Mayr et al.[225] Artificial synapses with 
SNO were also demonstrated in three-terminal transistors by 
modulating the density of oxygen vacancies in the SNO channel 
via electrochemical reactions through the ionic liquid (IL)–SNO 
interface.[220] In contrast to two-terminal memristive devices, 
three-terminal electronic synapses offer combined stimulus 
transmission and learning processes. Potentiation and depres-
sion were generated by applying positive and negative voltage. 
In addition, symmetric and asymmetric STDP curves, as 
determined by the sequence of drain spikes and source spikes, 
were observed.

4.1.2. Organic Materials for Electronic Permissive Devices

Compared with inorganic synapses, organic synapses are 
promising components of neuromorphic circuits due to their 
low cost, flexibility, low energy consumption, and biocompat-
ibility.[126,226,227] However, some major drawbacks of these 
devices include high variability, long switching time, poor 
endurance, and poor retention capability. Recently, Burgt et al. 
demonstrated the potential of synaptic cells, based on Nafion 
and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate 
(PEDOT:PSS), for neuromorphic computing (Figure  12).[123] A 
nearly perfect linear function was obtained in this device. Low 
energy consumption (<10 pJ for 103 µm2 devices) and LTPot and 
LTD properties were achieved, accompanied by over 500 dis-
tinct states. STP and PPF properties were also obtained by con-
trolling the time interval between two short pulses. Moreover, 
Pavlovian conditioning was realized in this device. Initially, only 
input neuron N1 can activate output neuron N3, while neuron 
N2 does not. Through permanently associating N2 with N1 by 
learning-induced synaptic weight modification of the device, 

Figure 10.  Properties of PCM-based neurons. a) Artificial neuron architecture based on a phase-change device. b) Conductance change with the number 
of pulses applied to the device. The neuron displayed firing after six pulses were applied. c) Integrate-and-fire dynamics under excitation with different 
pulse widths (Pw) and amplitudes (PA). a–c) Reproduced with permission.[217] Copyright 2016, Springer Nature.

Adv. Mater. 2021, 33, 2006469
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input N2 could elicit a response at N3, thus mimicking the asso-
ciative memory of biological synapses.

Usually, organic transistors work at tens of kA cm−2.[228] 
However, a current density at the level of MA cm−2 is needed for 
highly integrated, high-performance electronics, which compro-
mises the low-power operation in neuronal networks. Recently, 
diketopyrrolopyrrole–terthiophene donor–acceptor polymer 
(PDPP) was used to fabricate a vertical-structured organic tran-
sistor, displaying MA cm−2 switching with a 108-switching ratio 
(Figure 13).[229] Furthermore, the switching energy needed per 
event is in the sub-pJ scale, showing a perfect combination of 
high on-state conductivity (5000 S m−1), large current tunable 

ratios, and low operation energy (10–100 fJ). Synaptic properties 
such as STP and LTPot were also achieved using this device.

Several other organic material-based systems also exhibit 
good performance. For example, sputtering Au nanoparticles 
onto the surface of ITO/[Ru(L)3](PF6)2/Au devices showed supe-
rior performance, with lowered resistance on a small scale device 
of 60 nm2 and an improved switching time of 30 ns.[230] Energy 
consumption of 1.5 fJ per bit was achieved with unchanged 
endurance and stability. In this device, it exhibits high repro-
ducibility (≈350 devices). In addition, an ethyl viologen diper-
chlorate [EV(ClO4)]/triphenylamine-containing polymer 
(BTPA-F) organic system was first demonstrated by Liu et  al.  

Figure 11.  Structures and synaptic properties of Ag-based synapses. a) Schematic illustrations of Au@Ag nanoparticle-dispersed PVP synapses. STDP 
behaviors that follow symmetric b) Hebbian and c) anti-Hebbian learning rules by different programmed synaptic pre- and post-pulses. d) SEM imaging 
of memristive device structures consisting of two Pt or Au electrodes and a switching layer with embedded Ag nanoparticles. e) A Ca2+ and Ag dynamic 
process in biological and SiOxNy:Ag synapses. f,g). Experimental demonstration of PPD and PPF in a SiOxNy:Ag memristive device. a–c) Reproduced 
with permission.[219] Copyright 2018, American Chemical Society. d–g) Reproduced with permission.[72] Copyright 2017, Springer Nature.
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In addition to SRDP and STDP synaptic behaviors, STM to 
long-term memory (LTM) and learning–forgetting–relearning 
memory behaviors were mimicked in this device.[231] Inspired 
by natural plants, chlorophyll/PDPP4T based photoresponsive 
organic FETs also showed EPSC, PPF, STM, and LTM behav-
iors.[228] Meanwhile, the device exhibited good responsivity even 
after storage in air for 90 days.

4.2. Materials for Magnetic Memristive Devices

Magnetic memory has been prevalent for several decades; 
therefore, the maturity of magnetic device technology and 
manufacturing offers spintronic memristors advantages over 
other materials. In recent years, various synaptic and neuronal 
behaviors have been demonstrated through MTJ-based spin-
tronic memristors.[232–235] These MTJs are composed of two 

ferromagnetic layers encompassing an oxide tunneling barrier 
that is most often, if not always MgO, due to its superior tun-
neling magnetoresistance ratio. One of the layers (pinned layer) 
has a fixed magnetic polarization, while the other layer (free 
layer) can be altered via external stimulation, such as incoming 
spin-polarized current. Various MgO-based MTJ devices have 
been proposed to mimic a variety of synaptic phenomena. For 
example, Park and co-workers connected multiple PtMn/CoFe/
Ru/CoFeB/MgO/CoFeB MTJs in series to mimic the asso-
ciative memory of the brain.[236] They demonstrated that the 
association of individual electrical signals below the switching 
current threshold induced magnetization switching events, 
generating output signals. Roy et al., through theoretical simu-
lations, demonstrated that MTJs can simulate volatile memory 
and LTPot, similar to biological synapses (Figure 14).[237] By 
generating multiple low energy input pulses in a short period 
(2.5  ns), they showed an additive effect of these pulses to 

Figure 12.  Neuromorphic behavior of the PEDOT:PSS device. a) Schematic of the device structure. b) Molecular reduction process of PEDOT:PSS.  
c) LTPot and LTD properties when the device is applied with voltage pulses. d) STP and PPF properties. e) Pavlovian learning circuits. a–e) Reproduced 
with permission.[123] Copyright 2017, Springer Nature.
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induce magnetization switching. However, if the frequency of 
the pulse was too low, or stopped before switching occurred, 
the magnetization state reverted to its original state, demon-
strating volatility. This theoretical calculation was then proven 
practically using two MTJ–heavy metal heterostructures to 
mimic stochastic synapses capable of LTPot. Recently, Zhang 
et al. developed a domain wall memristor based on Ta/CoFeB/
MgO heterostructures.[238] Through induction of domain 
wall movement in the CoFeB layer, both LTPot and LTD were 
demonstrated by modulating the number of negative pulses. 
Synaptic plasticity such as STDP was also demonstrated with 
both magnetization switching and domain wall-based MTJ 
devices.[239] In addition, Cao et  al. designed a multistate ferro-
magnet by intercoupling a binary ferromagnet with another in-
plane ferromagnetic layer.[240] Through SOT-driven domain wall 
motion, the device demonstrated other synaptic functionalities 
beyond STDP, such as exhibitory and inhibitory postsynaptic 
potentials.

Beyond artificial synapses, researchers have been considering 
various MgO-based MTJ devices to mimic a variety of neuronal 
phenomena. However, one of the problems with synthetic spin-
tronic neurons is their inability to model the volatility in biolog-
ical neurons. Therefore, researchers have implemented various 
strategies to simulate leakage if the external input is stopped. 
In 2016, Roy and co-workers demonstrated the first application 
of leaky-integrated switching of an MTJ–heavy metal hetero-
structure to model stochastic spiking neurons.[241] Apart from 
being a better model of biological neurons and synapses, this 
design decouples reading and writing current pathways, thus 
preventing read–write conflicts and improving the reliability of 

the device. Two years later, Friedman’s group developed the first 
LIF neuron with lateral inhibition using a domain wall MTJ 
coupled to a permanent ferromagnet beneath the domain wall 
track (Figure 15).[242] Unlike a normal domain wall MTJ, the fer-
romagnet causes the domain wall to shift in the opposite direc-
tion as the current applied. Therefore, if the current is stopped, 
the domain wall would eventually move back to its original 
starting position, simulating neuron leaking (Figure  15b). To 
prevent firing at the same time in the array, neurons are care-
fully arranged such that those carrying a higher current inhibit 
adjacent ones with lower current due to magnetostatic cou-
pling, thus inducing a further reduction in their domain wall 
velocity (Figure  15c). Another LIF neuron design proposed 
by Agrawal and Roy does not need an additional ferromagnet 
for leaking.[243] Instead, leaking is caused by shape anisotropy 
because the shorter pinned layer is placed at one end of the 
longer CoFeB-free layer. When the domain wall shifts away 
from the equilibrium position due to a current input, there is 
a change in the azimuthal angle of the domain wall, causing 
the domain wall to drift back to the equilibrium position. In 
the same year, Friedman’s group also came up with an artificial 
LIF neuron using shape anisotropy.[244] With a trapezoidal free 
layer, the domain wall naturally drifts toward the lower energy 
narrower edge, simulating leaking. Creative designs by these 
research groups in recent years allow controlled simulation of 
LIF neurons and in-depth study of neuronal phenomena.

Switching beyond the traditional MTJ design has also been 
demonstrated. Sui and co-workers recently simulated the net-
work of a synapse using cellulose@Fe3O4 nanoparticles.[245] 
Capitalizing on the superparamagnetic properties of iron oxide 

Figure 13.  STP and LTPot of an electrolyte-gated PDPP VOFETs device. a–c) Structure of the transistor. b) Polarization microscopy image of a finished 
VOFET without an electrolyte gate. c) Colored cross-sectional SEM image of the device. d–f) EPSC triggered by presynaptic spikes with different spike 
intervals. a–f) Reproduced with permission.[229] Copyright 2019, The Authors, published by Springer Nature.
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nanoparticles that depend on electron transfer between Fe2+ 
and Fe3+ in the crystal structure, they managed to develop a 
magnetic synapse network with small hysteresis loops and low 
coercivity. Meanwhile, magnetic neurons and synapses based 
on alternative mechanisms have also been demonstrated. To 
utilize these mechanisms, device designs that comprise dif-
ferent materials have been used. One such example utilized 
magnetic skyrmions. A skyrmion-based neuron that could 
mimic LIF neuron function in a single device was realized by 
using a Co/Pt-based nanotrack.[246] Moreover, a voltage-con-
trolled skyrmion memristor for synapse arrays with ultralow 
energy consumption of 5 aJ was developed through addition 
of a ferroelectric lead magnesium niobate–lead titanate crystal 
to a MTJ.[247] Besides MTJs, Josephson junctions can be used 
to mimic synapses. Rippard and co-workers recently dem-
onstrated that magnetic Mn nanoclusters in a silicon layer 
between two superconducting Nb electrodes changed magnetic 
states at extremely low energies (<1 aJ).[248] Mishra et al. devel-
oped a three-terminal Pt/Co/GdOx artificial synapse based on 
magnetization of Co, where an applied electric field migrates 
oxygen ions into or out of the Co layer, depending on its 
direction, thus affecting Co layer magnetization and its corre-
sponding anomalous Hall resistance.[249] Based on this mecha-
nism, the authors developed a synapse design that generated 
positive and negative synaptic weights.

4.3. Materials for Photonic Memristive Devices

Furthermore, data storage and processing have been achieved 
with unparalleled bandwidth and speed, low-power consump-
tion, and multidata storage based on photonic memristive 
devices and neuromorphic computing.[250–255] Two-terminal 
devices based on oxide heterojunction memristors were devel-
oped to simulate multiple synaptic plasticities under photoirra-
diation. The ZnO1−x/AlOy heterojunction fabricated by Hu et al. 
exhibited STP, LTP, PPF, and neuromorphic activation/depres-
sion due to the trapping/detrapping of the AlOy layer.[252] In 
addition, Gao et al. demonstrated a simple indium tin oxide/Nb-
doped SrTiO3 structure, which displayed PPF, STM, LTM, and 
learning-experience behaviors in response to optical stimuli over 
the entire visible region.[254] Kumar et al. demonstrated another 
all-oxide-based photonic synapse with high transparency, which 
exhibited STP, LTP, and PPF under ultraviolet illumination.[255]

2D material-based photonic synapses can also be achieved 
through two-terminal and three-terminal structures. For 
example, an efficient neuromorphic visual system was achieved 
with simple, two-terminal, optoelectronic resistive random 
access memory (ORRAM)-based devices that demonstrate non-
volatile optical resistive switching and light-modulated synaptic 
behaviors.[256] The Pd/MoOx/ITO sandwich structure has the 
two-terminal ORRAM design (Figure  16a). STP under high 

Figure 14.  STP–LTPot behavior in an MTJ-based device. a) The energy landscape of the free layer (FL). Upon receiving an input stimulus, the MTJ 
transitions from its initial low-conductance AP state to the high-conductance P state. This transition depends on the time interval between each input, 
demonstrating STP–LTPot behavior. b) STP behavior exhibited by an MTJ synapse with an input stimulus of 100 µA for 1 ns and a time interval of 6 ns 
between pulses. c) Transition to the LTPot behavior exhibited by a MTJ synapse when the time interval between pulses is reduced to 3 ns. d) Short-
term memory (STM) and long-term memory (LTM) transitions exhibited in a 34 × 43 MTJ memory array. Five sets of pulses (100 µA, 1 ns) are applied 
to each “on” pixel. With a time interval, T = 2.5 ns, the array transitions to LTM progressively with each stimulus, while “forgetting” the input pattern 
when T is increased to 7.5 ns. a–c) Reproduced with permission.[237] Copyright 2016, American Physical Society.
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Figure 15.  DW–MTJ neuron. a) Schematic illustration of the DW–MTJ neuron. Leaking is induced via a fixed ferromagnet that provides a constant 
magnetic field, while integration is induced when enough current passes through the two electrical contacts. b) Exhibition of leaking and integration 
functionalities of the DW–MTJ neuron. When three consecutive current pulses of varying magnitude (2.75, 2.3, and 2.5 × 1012 A m−2) were applied 
for 2 ns, integration was demonstrated. On the other hand, between each pair of pulses are an interval of 30 ns without applied current, in which 
the magnetic field of the fixed ferromagnet induces an opposite DW motion, simulating leaking. c) Demonstration of lateral inhibition between  
two neighboring neurons. Current pulses of 2 × 1012 (solid orange line) and 0 A m−2 (solid blue line) were applied to neuron 1. Current pulses of  
1.5 × 1012 A m−2 was applied to neuron 2. a–c) Reproduced with permission.[242] Copyright 2018, AIP.

Figure 16.  Properties of two-terminal optoelectronic synaptic devices. a) Schematic structure of the MoOx optoelectronic device. b) Light-intensity 
tunable STP. c) LTPot with the pulse number up to 500. d) The transition from STP to LTPot at different light intensities. e) Schematics of the human 
visual system and an artificial neuromorphic visual system comprising an optoelectronic device and an artificial neural network. f) Improvement of 
image recognition rate with optoelectronic memristive device preprocessing. a–f) Reproduced with permission.[256] Copyright 2019, The Authors, 
published by Springer Nature.
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light density stimulation showed significant spike currents 
and extended relaxation times (Figure  16b). STP was trans-
mitted to LTPot through repeated-pulse stimulation (500 iden-
tical pulses), during which the current increased steadily with 
increasing pulse number (Figure  16c). Retention profiles after 
300 pulses were recorded for 300 s. Increasing pulse number 
resulted in systematic increases in photogenerated carriers 
(Figure 16d). The human visual system could be mimicked by 
combining ORRAM devices and an artificial neural network for 
image preprocessing and recognition (Figure  16e). Significant 
improvements in image recognition rate were achieved with 
ORRAM-based image preprocessing than without reprocessing, 
suggesting the critical role of ORRAM devices (Figure 16f). In 
addition, a hybrid MoS2/perylene-3,4,9,10-tetracarboxylic dian-
hydride heterojunction synaptic transistor was fabricated by 
applying electrical and optical stimuli. Various basic plasticity 
functions of biological synapse were obtained, including IPSC, 
EPSC, PPD, PPF, SRDP, dynamic filtering, and long-term 
modulation of weight change.[251]

Meanwhile, multicolor sensing beyond single wavelengths 
is highly demanded, which can also be achieved using 
three-terminal transistor optoelectronic memory devices. 
A heterostructure based on hybrid WSe2/BN has rendered 
optoelectronic memory that can identify across multiple 
wavelengths (Figure  17a).[257] The dynamic behavior of this 
optoelectronic memory included programming, readout, 
and erasing processes (Figure  17b–d). These processes are 

controlled by modulating applied positive or negative gate (Vg) 
and the presence of light illumination. Upon photon excita-
tion, the electric field drives electrons in the BN conduction 
band into the WSe2, with localization of positive charges in 
the middle of the BN bandgap. After programming, the cur-
rent at the positive gate (Vg > 0) is read without light irradia-
tion. Then, erasing is carried out with both light illumination 
and a positive gate on WSe2/BN devices. In this process, ion-
ized positive defects in the BN are filled with electrons in the 
valence band upon photostimulation. The as-generated holes 
in the BN are driven by the external electric field toward WSe2. 
The switching speed of WSe2/BN memory was highlighted via 
completion of charge erasing within only 2 s. Moreover, a large 
switching ratio (≈1.7 × 104) was achieved in this device. When 
the WSe2/BN device was irradiated by light in the wavelength 
range from 750 nm (1.65 eV) to 410 nm (3.02 eV), the ON cur-
rent in the electron-domination regime increased slowly after 
each programming process (Figure  17e). Meanwhile, highly 
distinct storage states were obtained at different irradiation 
wavelengths, highlighting the multiwavelength responsi-
bility of the WSe2/BN optoelectronic memory. A 3 × 9 array 
with a 27-pixel matrix based on WSe2/BN image sensors was 
demonstrated for imaging letters by exposing them to different 
wavelengths of light at selected pixels (Figure  17f). Three dif-
ferent pixel groups showed three distinct storage states (5, 12, 
and 31 nA), which allow the device to be used as a color image 
sensor without a filter.

Figure 17.  Properties of multibit optoelectronic devices based on field-effect-transistor (FET) devices. a) Design of a WSe2/BN heterostructure-based 
optoelectronic memristive device. b–d) Schematic mechanism of the FET under programming (b), readout (c), and erasing (d) processes. e) Transfer 
curves at different photon energies. f) SEM image of 3 × 9 WSe2/BN arrays. g) Current response of the array under irradiation at three different photon 
energies (638, 515, and 473 nm). a–f) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https://
creativecommons.org/licenses/by/4.0).[257] Copyright 2018, The Authors, published by Springer Nature.
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PCMs can also be used to build all-photonic synapses. All-
photonic artificial synapses and neuromorphic systems are 
appealing because the charge-based wiring can be circumvented 
to enhance neuromorphic computing. PCMs provide an oppor-
tunity to achieve purely photonic memory due to their ability 
to undergo phase change between amorphous and crystalline 
states. Bhaskaran’s group constructed on-chip memory devices 
comprising gallium lanthanum oxysulphide fibers. These 
devices operated at 13.4 pJ per switching with multilevel and 
multibit capabilities.[20] Cheng et al. demonstrated STDP based 
on a photonic synapse with on-chip waveguide structures.[24]

5. Networks for Neuromorphic Computing

Many artificial networks have been designed to achieve real-
istic neuromorphic computing, including ANNs and SNNs. 
In ANNs, the output remains static and mathematical optimi-
zation determines synaptic weight.[168,174,175,258] On the other 
hand, SNNs are related to the history of neural activity, sim-
ilar to the human brain’s learning process.[259–264] Generally, 
devices are designed using supervised, unsupervised, and rein-
forcement learning algorithms to simulate the human brain’s 
neural network for image recognition, speech recognition, and 
robotics.[21,265–269]

For supervised learning, input data are labeled while output 
data are desired results. SiGe single crystals epitaxially grown 
on Si-based resistors were used to conduct supervised learning 
ANN.[270] Dislocation of SiGe for Ag filament growth in a con-
fined 1D channel (Figure  18a–c) enabled long retention (45 h 
at 85  °C), large switching ratios (≈104), and long endurance  

(106 cycles). In addition, a three-layer neural network with 
28 × 28 pre-neurons, 300 hidden neurons, and 10 output neu-
rons were utilized to simulate image recognition (Figure 18d,e). 
A synapse layer with episRAM crossbar arrays and the periph-
eral circuit were shown in Figure  18f. An average learning 
accuracy of 95.1% was obtained by testing 10  000 images, 
comparable to the ideal device (97%).

The unlabeled input data of unsupervised learning make 
output data unpredictable. Ag nanoparticle-based diffusive 
memristors can serve as LIF neurons, in which the integra-
tion time could be tuned through silver migration alone or 
through interactions with circuit capacitance. The integration 
of these neurons and nonvolative memristive synapses can be 
used as ANNs. An example of integrated chips comprising one-
transistor–one-memristor (1T1R) synaptic arrays and diffusive 
memristor neurons was shown in Figure 19.[271]

Reinforcement learning is represented by a device that 
achieves a learning target through maximum rewards in a given 
environment. In situ learning in a multilayer neural network 
implemented in a 128 × 64 Ta/HfO2/Pt memristor array was 
realized with high efficiency (Figure 20).[272] The network cor-
rectly classified 91.71% of 10 000 test images after training with 
80 000 samples. Further simulations suggest that an improve-
ment over 97% can be achieved using a larger (e.g., 1024 × 512) 
memristor array. The results imply that the accuracy of analog 
memristor neural networks approaches that of state-of-the-art 
digital CMOS systems, holding potential for further improve-
ments in speed-energy efficiency.

Compared to ANNs, the information in SNNs is encoded 
within the time interval between binary spikes. Chen et  al. 
constructed an SNN with a high switching ratio for image 

Figure 18.  Supervised learning through SiGe dislocation-based devices. a) Schematic of the switching of SiGe epiRAM. b) Cross-sectional transmission 
electron microscopy imaging of 60 nm SiGe grown on a Si substrate. c) Cross-sectional scanning electron microscopy imaging of an epiRAM-based 
device. d) Schematic of a synapse composed of epiRAM-based crossbar arrays and circuits. e) Comparison of recognition accuracy between an ideal 
device and an epiRAM-based device. a–e) Reproduced with permission.[270] Copyright 2018, The Authors, published by Springer Nature.
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recognition based on wafer-scale memristive crossbar arrays 
comprising h-BN 2D materials (Figure  21).[273] The devices 
exhibited an ultralow energy consumption (20 fJ per set), 
making them appealing as spiking neuromorphic hardware. In 
2020, Li et al. demonstrated a new type of neural network com-
prising synapses, artificial dendrites, and soma (Figure 22).[274] 
Compared with the system without the dendrites, the power 
consumption was reduced over 30 times, with improved recog-
nition accuracy. Moreover, filtering and integrating functions 
were also realized using these devices.

6. Outlook

In the past decade, memristive devices of diverse materials 
have demonstrated the ability to mimic various biological syn-
apses and neuronal behaviors, as summarized in this review. 
These devices exhibit a vast potential to simulate actions in 
biological neural networks and to better understand mecha-
nisms of learning and memory. A number of significant hur-
dles remain to be overcome before this emerging technology 
brings many exciting advances in neuromorphic computing 
and artificial intelligence.[275–278] The current challenge associ-
ated with memristors across dissimilar materials is the inability 
to fully mimic biological synapses. Most of the devices reported 
thus far can only demonstrate some functions of neurons and 

synapses. To achieve a large-scale neural network that could 
mimic biological ones with increased accuracy, huge gaps of 
knowledge need to be eliminated in areas such as neurobiology, 
novel materials, device design, neural network optimization, 
and software algorithms.

Before discussing the deficiencies in our understanding of 
memristors, one major factor preventing the simulation of 
higher-order neural network behaviors is our lack of under-
standing of biological neural networks. Though much progress 
has been made on understanding how the human brain per-
forms complex cognitive tasks, there is no doubt that further 
understanding of how the brain functions is needed. One 
example was demonstrated by Ma’s group, who designed a 
memristive autapse connected to a neuron model that can 
mimic the autaptic current mediated by α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid receptors for spiking and 
bursting modulation.[279] This advance was made possible only 
due to the neurological phenomenon recently reported for bio-
logical cellular autapses.[280]

An artificial neural network that closely mimics biological 
SNNs is one possible means to unlock the human brain’s 
processing power. To achieve this, memristive devices mim-
icking synapses and neurons need to achieve the functions of 
their biological counterparts. One such potential device is the 
diffusive memristor that can simulate the temporal dynamics 
of biological synapses.[72] However, the ability to tune artificial 

Figure 19.  Unsupervised learning based on Pd/HfOx/Ta drift and Pt/Ag/SiOx:Ag/Ag/Pt diffusive memristors. a) Optical images of the neural network con-
sisting of an 8 × 8 1T1R memristive synapse crossbar that interfaces with eight diffusive memristors as artificial neurons. b) Schematic of the 8 × 3 network 
with inputs based on the neurons’ outputs shown in (a). a,b) Reproduced with permission.[271] Copyright 2018, The Authors, published by Springer Nature.
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devices in order to mimic their biological counterparts relies 
heavily on our fundamental understanding of their switching 
mechanisms. Despite the progress, switching mechanisms 

for redox and PCMs continue to elude us due to their fast 
atomic rearrangement at the nanoscale. We need advanced 
in situ techniques to decode these atomic rearrangements, 

Figure 20.  Memristive platform comprising 1T1R arrays for reinforcement learning. a) Photos of a HfO2-based memristive device. b) Photo showing the 
integrated 128 × 64 array, as partitioned into two layers. c) Training-dependent minibatch accuracy. d) The Igate–V curves extracted from data collected 
during training. a–d) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https://creativecommons.
org/licenses/by/4.0).[272] Copyright 2018, The Authors, published by Springer Nature.

Figure 21.  Spiking neural networks based on h-BN devices. a) Optical image of a 2-in. wafer with Au/h-BN/Au memristive crossbar arrays. b) Scanning 
electron microscopy imaging of a crossbar array containing 750 nm × 750 nm Ag/h-BN/Ag memristors. Scale bar: 4.5 µm. c) Atomic force microscopy 
imaging of the Ag/h-BN/Ag memristors. Scale bar: 2 µm. d) Cross-sectional transmission electron microscopy imaging of the h-BN. e) Threshold-type 
RS characteristic measured in an Ag/h-BN/Ag memristor. f) Statistical calculation of tSET. a–f) Reproduced with permission.[273] Copyright 2020, The 
Authors, pubslished by Springer Nature.

Adv. Mater. 2021, 33, 2006469

 15214095, 2021, 46, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202006469 by N
ational U

niversity O
f Singapo, W

iley O
nline L

ibrary on [06/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


© 2021 Wiley-VCH GmbH2006469  (26 of 33)

www.advmat.dewww.advancedsciencenews.com

such as atomic force microscopy, scanning tunneling micro
scopy, and electrostatic force microscopy. In addition, further 
improvements of specific device parameters are also needed 
for the successful realization of a neural network. For example, 
although memristors can achieve lower energy consump-
tion than traditional silicon-based transistors, their energy 
consumption remains significantly higher than that of the 
human brain, which only uses about 10 to 20 W to perform 
a wide range of complicated cognitive tasks.[281] Depending 
on the device switching mechanism, switching energy could 
be decreased by reducing energy barriers for switching, such 
as reducing device volume in phase-change devices or using 
topological insulators for spintronic systems[282,283] However, 
reduction of energy consumption must be balanced well with 
device stability and switching speed, which would be nega-
tively affected by lower energy barriers and driving power. 
Other device parameters that need to be improved include the 
reproducibility, stability, and reliability. To form a neural net-
work composed of memristive neurons and synapses at the 
scale of human brain, high device fabrication reproducibility 
needs to be achieved. Cycle-to-cycle variations in individual 
device parameters would lead to reduced efficiency and accu-
racy of the entire neural network. Moreover, individual devices 
would be required to undergo huge numbers of read–write 
cycles. Therefore, the stability of devices used in the network 
should be maintained to prevent failures due to structural 
fatigue.[284,285] Improvements in device endurance to repeated 
read–write cycles could be achieved using novel material com-
positions and device designs that reduce mechanical stress and 
diffusion. For neuromorphic computing, it is essential that 
memristive devices possess a large dynamic conductance range 
(Gmax/Gmin) to enable multiple accessible conductance states. 
Lastly, as we scale the neural network larger, the inherent  

nonlinearity and asymmetry due to programming or sneak-path 
currents in crossbar-based applications results in increased 
energy and time expenditure in training due to loss in training 
accuracy. To tackle this problem, various novel device structures 
were developed such as pairing the memristors with transistors 
or capacitors,[123,214,286,287] the introduction of dopants or modu-
lation layers,[288,289] and the use of programming [46,290] to con-
stantly correct for the nonlinearity and asymmetry.

While the above challenges are common among electronic 
memristors, memristive technologies that utilize different 
stimuli, such as magnetic fields or photons, also possess 
challenges. In this review, we summarized how spintronic 
memristor-based ANNs could be used in various applications. 
However, when compared to other memristors, MTJs have 
smaller resistance changes, especially in domain wall mem-
ristors with multiple intermediate states.[291] This character 
makes the output reading relatively more difficult and espe-
cially vulnerable to thermal fluctuations when in the nanoscale. 
Therefore, research on novel spintronic materials or device 
designs that results in significant linear resistance change 
would enable more efficient MTJs. One such novel design was 
developed by Chen et al., who used an antiferromagnet to sand-
wich a ferromagnetic nanowire in an attempt to achieve viscous 
magnetization dynamics.[292] Various synaptic behaviors such 
as STDP could be modeled by correlating the viscous dynamics 
and memristive behaviors. Another design by Sasaki’s group 
utilized a three-terminal Co/Pd multilayer DW MTJ with 
inherent linear and symmetric conductance response upon 
applied pulses.[293] By using optical lithography and Ar ion 
milling, they managed to achieve an element with 200 steps, 
allowing a broad, linear dynamic range of conductance to be 
modulated over 200 pulses. Furthermore, spintronic memris-
tors provide solutions for realizing interconnectivity between 

Figure 22.  Single-layer neural networks with dendrites. a) Photograph of the crossbar arrays with soma, dendrites, and synapses. b) Comparison 
of the switching power with and without dendrites. c) Comparison of recognition accuracies with this neural network and the software baselines.  
a–c) Reproduced with permission.[274] Copyright 2020, The Authors, published by Springer Nature.
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thousands of artificial synapses to a single neuron, mimicking 
the average biological synapse per neuron ratio.[294] Multiple 
studies have demonstrated the ability of spintronic devices and 
systems to stack in a 3D manner for various applications.[295,296] 
With further research in novel device materials and miniature 
device sizes, the development of a highly integrated 3D spin-
tronics-based neural network system that could maintain high 
levels of interconnectivity through efficient communication in 
all three dimensions could potentially be realized.

Photonic memristors offer promising platforms as artifi-
cial synapses, especially with the advancement of optogenetics 
in recent years.[297] However, higher-order plasticity has not 
been experimentally realized in all-photonic memory, even 
though various groups have demonstrated PCM-based syn-
aptic plasticity with varying degrees of success. Fulfillment of 
higher-order plasticity has been challenging due to the lack of 
a detailed mechanistic understanding of resistive switching in 
associated devices. In addition, PCM-based neuro-inspired com-
puting and in-memory computing still require improvements in 
various areas, including reduced stochasticity, less drift, faster 
speed, lower power consumption, and longer endurance. Fur-
ther improvements in the performance of PCM synaptic devices 
require significant research efforts on device physics and com-
prehension of material properties in complex environments. 
Particular studies of photovoltaic and photogate effects on 
resistive switching would afford better control over device per-
formance. In addition, most of the materials used in photonic 
memristors have broadband absorption in the UV region. How-
ever, photonic memristors generally exhibit weak sensitivity to 
the infrared region. To bridge this gap, organic dyes or lantha-
nide-doped nanoparticles with tunable absorption in the NIR-II 
region could be considered. Furthermore, the sharp absorption 
peaks of lanthanide ions can provide memristive responses with 
excellent wavelength selectivity. Moreover, mechanistic under-
standing, coupled with novel material design, may pave the way 
to further develop an all-photonic neural network.

In closing, considerable breakthroughs on multiple fronts 
such as biology, engineering, materials science, and computa-
tional science are still be needed to achieve an artificial neural 
network that can adequately mimic physical memory. Although 
the development of memristors is at its infancy, they provide 
alternative non-von Neumann solutions for neuromorphic com-
puting because of their ease of tunability and flexible choices of 
external stimuli and working mechanisms. If the above difficul-
ties can be addressed, we will be one step closer to mimicking the 
human brain for further advances in neuromorphic computing.
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