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ABSTRACT: X-ray scintillators have utility in radiation detection,
therapy, and imaging. Various materials, such as halide perovskites,
organic illuminators, and metal clusters, have been developed to
replace conventional scintillators due to their ease of fabrication,
improved performance, and adaptability. However, they suffer from
self-absorption, chemical instability, and weak X-ray stopping power.
Addressing these limitations, we employ alkali metal doping to turn
nonemissive CsPb2Br5 into scintillators. Introducing alkali metal
dopants causes lattice distortion and enhances electron−phonon
coupling, which creates transient potential energy wells capable of
trapping photogenerated or X-ray-generated electrons and holes to
form self-trapped excitons. These self-trapped excitons undergo
radiative recombination, resulting in a photoluminescence quantum
yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and
enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3
nGyair s−1 and an imaging resolution of 21 lp mm−1.
KEYWORDS: perovskites, ion doping, self-trapped exciton states, scintillators, X-ray imaging

Scintillators, which convert high-energy radiation into low-
energy photons, have widespread applications in fields

ranging from radiation detection and photodynamic therapy to
medical imaging.1−10 Traditional materials, such as bulk-
formed CdWO4, activator-doped NaI:TI, and organic BC-408,
have been commercially used as X-ray scintillators. However,
they suffer from limitations such as challenging fabrication
conditions, limited optical tunability, and low light yields in
plastic scintillators.11−13 To overcome these limitations, halide
perovskites,14−17 organic luminescent molecules,18−20 and
metal clusters21−23 have been developed. These materials
offer a high photoluminescence efficiency, high-throughput
solution fabrication, and improved flexibility. However, halide
perovskites suffer from severe self-absorption due to their
inherent bandgap emission, limiting their scintillation perform-
ance.24 Moreover, their ionic structure makes them highly
susceptible to moisture-induced instability.25,26 On the other
hand, scintillators based on organic luminescent molecules or
metal clusters show reduced self-absorption but lack sufficient
X-ray stopping ability.27,28 Therefore, the quest for stable
scintillator materials that simultaneously address self-absorp-
tion issues and offer strong X-ray stopping power remains
crucial for advancing the scintillation performance.
CsPb2Br5, analogous to the well-known CsPbBr3 scintillator,

holds promise for a strong X-ray stopping capability. Moreover,

CsPb2Br5 features an absorption edge beyond the visible
emission range, eliminating self-absorption during visible
irradiation, making it ideal for nonlinear optics and lasers.29

Its low-dimensional layered crystal structure enhances
chemical and environmental stability.30,31 Hence, CsPb2Br5
offers potential as a stable X-ray scintillator with both non-self-
absorption and robust X-ray stopping power. However, pristine
CsPb2Br5, with its perfect crystal lattice, has an indirect
bandgap and thus no bandgap emission.29 To the best of our
knowledge, no reports existed on the utilization of single-
crystalline CsPb2Br5 as an X-ray scintillator. In this work, we
report a doping method to activate the “dark” CsPb2Br5 into a
high-performance X-ray scintillator (Figure 1). The emission at
∼700 nm in CsPb2Br5 arises from self-trapped excitons (STEs)
localized in the potential wells. The corresponding excitonic
states become radiative due to pronounced electron−phonon
coupling resulting from lattice distortion caused by the
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introduction of alkali metal ions such as K+, Rb+, or an excess
of Cs+ (Figure 1a).
Both undoped and doped CsPb2Br5 crystals were synthe-

sized in an aqueous solution by using a modified solvent
evaporation method. The undoped CsPb2Br5 appears as a
transparent crystal but lacks intrinsic bandgap emission (Figure
1b). CsPb2Br5 has a layered crystal structure with a soft lattice,
making it suitable for producing lattice-distortion-induced
emission, including luminescence from permanent defects or
STE.32−35 Based on this theory, alkali metal cations, such as
K+, Rb+, or an excess of Cs+, were introduced as dopants into
CsPb2Br5, facilitating transient or permanent lattice distortion
and subsequently inducing emission. Notably, all attempted
cationic dopants (K+, Rb+, and excessive Cs+) were found to
induce a red emission with a broad peak in CsPb2Br5 (Figure
1b and Supplementary Figure 1).
For instance, considering K+-doped CsPb2Br5 (CsPb2Br5:K),

this material shows a similarly strong X-ray mass attenuation
coefficient as CsPbBr3 (Figure 1c). It surpasses other reported
scintillators across a wide X-ray energy range, spanning from 1
to 400 keV. These materials include double halide perovskite
Cs2AgInCl6, metal clusters (C38H34P2)MnBr4 and (C12H26N4)-
Cu4I6, and the organic thermally activated delayed fluorescence
(TADF) molecule 4CzTPN-Bu.19,21,33,36 Furthermore, the X-

ray-excited radioluminescence (RL) of CsPb2Br5:K exhibits a
large Stokes shift of ∼320 nm (Figure 1d). This pronounced
shift largely alleviates self-absorption in X-ray scintillators.
Compared with other scintillation materials, the CsPb2Br5:K
material in this work shows a clear advantage in terms of
concurrently achieving reduced self-absorption and strong X-
ray stopping ability (Figure 1e).
To further investigate the effect of cation doping on the

crystal structure of CsPb2Br5, we performed X-ray diffraction
(XRD) analysis for samples with and without K+ (Figure 2a).
Both samples exhibited identical diffraction peaks, correspond-
ing to the tetragonal crystal structure of the CsPb2Br5 host
(PDF#25-0211). This suggests that K+ doping barely alters the
host crystal structure, as evident by the presence of identical
sharp and discrete Bragg diffraction spots in the electron
diffraction patterns for both samples (Figure 2b). However, a
noticeable shift of the peaks corresponding to (002) and (112)
planes toward larger diffraction angles (2θ) is evident in the
sample with K+ doping (Figure 2a and Supplementary Figure
2). According to the diffraction equation

=d n2 sin (1)

where d is the interplanar spacing, θ is the diffraction angle in
degrees, n is the integer coefficient in front of the wavelength λ,

Figure 1. Doping-induced radioluminescence in CsPb2Br5 through lattice distortion. a, Schematic of emission in alkali-metal-doped CsPb2Br5
from self-trapped exciton states induced by lattice distortion. b, Visual comparison of undoped CsPb2Br5 and K+-doped CsPb2Br5 under both
daylight and UV excitation. c, Mass attenuation coefficients of various scintillation materials plotted as a function of X-ray energy. d, Excitation
spectrum and radioluminescence (RL) of K+-doped CsPb2Br5. e, Comparative analysis of X-ray stopping ability and self-absorption among current
X-ray scintillators (Stokes shift in nm and mass attenuation coefficient at an X-ray energy of 30 keV/cm2 g−1).
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and nλ is a constant. From eq 1, it is apparent that a smaller
interplanar spacing d leads to a large diffraction angle θ. Thus,
the shift of 2θ to larger values reveals that K+ cations, being
smaller in atomic size compared to Cs+, induce a slight crystal
contraction of the CsPb2Br5 lattice upon doping.
High-resolution transmission electron microscopy (TEM)

images of (112) planes for samples with and without K+

dopants confirm a reduction in interplanar spacing from ∼4.71
Å in the undoped sample to ∼4.63 Å in the K+-doped sample
(Figure 2c). To ascertain the doping site, we investigated the
Pb−Br phonon modes, which are highly influenced by ion
doping, using Raman spectroscopy (Figure 2d). Compared
with the undoped sample, K+-doped CsPb2Br5 exhibited a blue
shift in the Raman mode A1g, while the position of Raman
mode B1g remains unchanged. Raman mode B1g refers to the
atomic displacement of Br along the a axis, implying that
cation doping has a negligible effect on the lattice parameter
along the a axis.37 The vertically resolved component of
Raman mode A1g represents the atomic displacement of Br

along the c axis,37 and the blue shift indicates that K+ dopants
enhance the Pb−Br vibration along the c axis. This suggests
that K+ dopants mainly substitute Cs+ located between two
Pb−Br layers, inducing lattice contraction due to their smaller
size compared to Cs+ (Figure 2e). This observation is in line
with the results obtained from XRD and high-resolution TEM.
To understand the luminescence mechanism in doped

CsPb2Br5, we first employed DFT calculations to investigate
the electronic properties of CsPb2Br5 and K+-doped CsPb2Br5.
Our goal was to assess how the incorporation of K+ dopants
affects the band structure. It is worth noting that the K+

concentration in the doped CsPb2Br5 is exceedingly low, at
approximately 0.5% (Supplementary Figure 3 and Supple-
mentary Tables 1 and 2). Consequently, we used a
computational model that reflects this minimal K+ substitution
(Supplementary Figure 4). The computational results demon-
strated that K+ dopants have negligible effects on the band
structure and density of states, supporting our expectation that
the luminescence observed in CsPb2Br5:K primarily results

Figure 2. K+-doping-induced lattice contraction in CsPb2Br5. a, XRD patterns of CsPb2Br5 with and without K+ doping. The XRD peaks
corresponding to the (002) and (112) planes exhibit a shift toward larger 2θ upon K+ doping. b, Electron diffraction patterns for CsPb2Br5 with and
without K+ doping. c, High-resolution TEM images of (112) planes in CsPb2Br5 with and without K+ doping. d, Raman spectra of CsPb2Br5 with
and without K+ doping. e, Schematic of atomic displacements corresponding to the non-degenerate Raman mode in CsPb2Br5 with K+ doping.
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from lattice distortion rather than band edges. To further
distinguish whether the luminescence originates from
permanent lattice defects or STE, we performed temper-
ature-dependent photoluminescence spectroscopy (Figure 3a
and b). The Huang−Rhys factor (S), which indicates the
strength of electron−phonon coupling, was calculated using eq
233

= S h
k T

FWHM 2.36
2

cot
2

h

phonon
2 phonon

B (2)

where h/2π*ωphonon denotes the phonon frequency, kB is
Boltzmann’s constant, and T is the temperature. The calculated
S value was 41 with a phonon frequency of 24.4 meV. This
high S indicates strong electron−phonon coupling, suggesting
a dopant-softened lattice. In this regard, transient lattice
distortion within the nanoscale domain is likely to form in
CsPb2Br5:K upon photoexcitation, resulting in trapped
excitons.
Normalized emission spectra under different excitation

wavelengths and normalized excitation spectra corresponding
to different emission wavelengths were examined (Figure 3c).
It was observed that all emission and excitation spectra
exhibited identical shapes and features, indicating that the red
emission arises from the relaxation of the same excited states.38

Moreover, the intensity of emission in CsPb2Br5:K exhibited a
linear relationship with excitation power without reaching
saturation (Figure 3d). The possibility of emission from phase
impurities like KPb2Br5, which may form in K+-doped
CsPb2Br5, was ruled out (Supplementary Figure 5). These

results support the conclusion that the luminescence in
CsPb2Br5:K, characterized by notable features such as a
broad red emission, a long carrier lifetime of ∼45 μs, and a
high photoluminescence quantum yield (PLQY) of 55.92%, is
primarily a result of STEs (Figure 3e and Supplementary
Figures 6 and 7). These STEs are mainly a result of strong
electron−phonon coupling induced by dopants, causing
photoexcited transient lattice distortion within dopant-
centered nanodomains rather than originating from permanent
lattice defects or impurities. Furthermore, the addition of
increased quantities of K+ to CsPb2Br5 crystals, without
disrupting their tetragonal structure, results in a more
significant contraction of the crystal lattice. This contraction
intensifies the electron−phonon coupling, thus improving the
STE (Supplementary Figure 7a and Supporting Information
Table 2). Similarly, other ion dopants (Rb+ and excess Cs+) in
CsPb2Br5 also induced photoexcited transient slight lattice
distortions, leading to red emission attributed to STE states
(Supplementary Figures 8−12).
The mechanism of radioluminescence in CsPb2Br5:K

scintillators appears highly likely to be the same as that of
photoluminescence, which arises from STEs, due to the
overlapping spectra of the two processes (Figure 4a). When X-
rays interact with the inner-shell electrons of heavy atoms in
CsPb2Br5:K, they trigger the photoelectric effect and Compton
scattering, generating secondary X-rays. These then excite
CsPb2Br5:K and subsequently produce high-energy hot
electrons and holes, which become free carriers upon
thermalization and eventually form free excitons. Finally,
these free excitons diffuse to the potential wells or regions of

Figure 3. Mechanistic investigation of red emission from self-trapped exciton (STE) states in CsPb2Br5:K. a, Photoluminescence spectra of
CsPb2Br5:K at various temperatures. b, Results of full width at half-maximum as a function of temperature. c, Left: emission spectrum of
CsPb2Br5:K under different excitation wavelengths. Right: excitation spectrum of CsPb2Br5:K corresponding to varying emission wavelengths. d,
Emission spectrum of CsPb2Br5:K under excitation with different power densities. Inset: fitting results of the emission intensity as a function of
excitation power. e, Schematic illustrating the emission mechanism involving STE in CsPb2Br5:K.
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lower energy due to the transient lattice distortion at excited
states, forming self-trapped excitons followed by radio-
luminescence (Supplementary Figure 7b).
The scintillation performance is greatly influenced by the

efficiency of X-ray absorption and emission. Hence, due to its
unique combination of non-self-absorption and robust X-ray
attenuation, the CsPb2Br5:K scintillator achieves a relative light
output (25,160 photons per MeV) approximately 3 times
greater than that of the commercial bismuth germanate (BGO)
scintillator, which produces 8500 photons per MeV (Figure
4b). Additionally, its light yield is comparable to the well-
studied CsPbBr3 nanoscintillator and other scintillators with
large Stokes shifts (Supplementary Table 3).39 Apart from light
yield, another important parameter for evaluating X-ray
scintillator performance is the detection limit, defined as the
X-ray dose rate at which the signal-to-noise ratio (SNR)
reaches 3.40 The calculated detection limit for CsPb2Br5:K is
162.3 nGyair s−1 (Figure 4c and Supplementary Figure 13),
significantly lower than the dose rate of 5.5 μGyair s−1 used in
X-ray diagnostics.41 Similarly, scintillators made from CsPb2Br5
doped with Rb+ and those with an excess of Cs+ exhibit
performance levels that are comparable to the CsPb2Br5:K
scintillator (Supplementary Figures 14−16).
We next examined the material stability of CsPb2Br5:K. This

material maintained strong photoluminescence for approx-
imately 40 days and radioluminescence for 10 days, showing
no structural damage even after being submerged in common
solvents such as toluene, dichloromethane, water, and ethanol

(Supplementary Figures 17 and 18). This enhanced stability
primarily results from its low-dimensional layered crystal
structure. Moreover, radioluminescence stability was assessed
by exposing CsPb2Br5:K to X-rays at a dose rate of 4.74 mGyair
s−1 for 30 min under conditions of 25 °C and about 80%
humidity (Figure 4d and Supplementary Figure 19). This
exposure resulted in a negligible reduction in the radio-
luminescence intensity. To further confirm its resistance to
high levels of irradiation, CsPb2Br5:K scintillators were
subjected to a higher X-ray dose rate of 21,560 mGyair min−1

for 40 min (Supplementary Figure 20). Even after enduring a
total dose of 862.4 Gyair, the radioluminescence intensity of
CsPb2Br5:K scintillators remained at ∼80% of its original
intensity.
We further demonstrated the use of the CsPb2Br5:K

scintillator for X-ray imaging. X-ray imaging with high contrast
and fine spatial resolution is crucial to revolutionize medical
diagnostics, nondestructive testing, and security screen-
ing.42−44 The high contrast and fine resolution are highly
dependent on the penetrability of radioluminescence along the
scintillation screen, which is mainly limited by radio-
luminescence intensity and self-absorption. Benefiting from
the high radioluminescence intensity and non-self-absorption,
CsPb2Br5 scintillators hold great promise for high-quality X-ray
imaging compared with CsPbBr3 microcrystal scintillators with
severe self-absorption (Supplementary Figure 21). Thus, the
CsPb2Br5 powders were used to mix with polydimethylsiloxane
to create a uniform scintillation film (∼150 μm thick). This

Figure 4. Scintillation performance of CsPb2Br5:K scintillators. a, Schematic of the scintillation mechanism in CsPb2Br5:K. b,
Radioluminescence spectra at 40 kV using a tungsten target for measuring the relative light output of CsPb2Br5:K and LYSO:Ce wafers, with a
BGO wafer as reference. All of these wafers have a thickness of 1 mm and a diameter of 7 mm. c, Detection limit of CsPb2Br5:K scintillator. d,
Radioluminescence stability of CsPb2Br5:K scintillators under an X-ray dose rate of 4.74 mGyair s−1 for 30 min (temperature, ∼25 °C; humidity,
∼80%).
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film enabled the X-ray imaging of the metallic accessory,
resistance wire, and integrated circuits at the millimeter or
micrometer scale using a homemade X-ray imaging setup, with
a spatial resolution of 21 lp mm−1 (Figure 5a−c).
In summary, we demonstrated that it is possible to activate

CsPb2Br5 materials for STE emission while effectively
eliminating self-absorption. This achievement stems from a
targeted approach involving ion-doping-induced lattice soften-
ing, leading to strong electron−phonon coupling. These
excitons, trapped by transient lattice distortion, resemble
nanoscale emitting centers within crystals, distinguishing them
from the macroscopic, collective band-edge emission typical of
the crystals as a whole. Notably, CsPb2Br5-based scintillators
offer a compelling set of advantages, including non-self-
absorption, potent X-ray stopping power, and enhanced
stability. These qualities result in a high light yield and a low
detection limit of 162.3 nGyair s−1. Moreover, we have
demonstrated the capability of CsPb2Br5:K scintillation films
in achieving high-resolution X-ray imaging, achieving a spatial
resolution of 21 lp mm−1. This achievement opens up
possibilities for imaging intricate electronics. The doping
approach employed in this study holds promise for diverse X-
ray scintillators, including Cl-based systems with high
electron−phonon coupling,45 with implications in fields
spanning medical diagnostics, materials science, security, and
beyond.
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