
ll
Article
X-ray-to-NIR multi-wavelength imaging
through stochastic photoluminescence and
compressed encoding
Luying Yi, Hong Qi Tan, Bo Hou,

Xiaogang Liu

chmlx@nus.edu.sg

Highlights

‘‘SPACE’’ with multiple lanthanide

transducers enables multi-

wavelength imager

Diverse scenes are encoded into a

single image, reconstructed using

algorithms

Channel expansion methods

include number and thickness

control of material layer

Multi-depth visualization and

multi-spectrum X-ray imaging are

obtained
We report a new method for multi-wavelength imaging called stochastic

photoluminescence and compressed encoding (SPACE), which employs multiple

lanthanide transducers. This system enables the simultaneous capture of four

distinct images, each tagged with different wavelengths: X-rays, UV, NIR I, and NIR

II. Optical encoders then process these images in different sampling patterns,

subsequently transmitting luminescence-based images to the CCD for detection.

Ultimately, four complete images corresponding to each wavelength can be

reconstructed from the encoded data captured by the CCD.
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X-ray-to-NIR multi-wavelength imaging
through stochastic photoluminescence
and compressed encoding

Luying Yi,1 Hong Qi Tan,2 Bo Hou,1 and Xiaogang Liu1,3,4,*
PROGRESS AND POTENTIAL

Multi-wavelength imaging is

crucial for comprehensive insights

into objects, but conventional

methods often have limitations

such as costly components and

restricted wavelength ranges. This

work presents stochastic

photoluminescence and

compressed encoding (SPACE),

which utilizes randomly arrayed

lanthanide transducers to encode

scenes tagged with different

excitation wavelengths into a

single image that covers X-rays

(0.089 nm), ultraviolet (375 nm),

and near-infrared I (808 nm) and II

(1,532 nm) channels. Expansion to

more channels is possible using
SUMMARY

Multi-wavelength imaging is crucial for gaining detailed insights
into the multi-depth or multi-wavelength information present in
the scenes. However, conventional methods often have limitations,
like costly and bulky components restricted to specific wavelength
ranges. Here, we introduce an imaging technique named ‘‘stochastic
photoluminescence and compressed encoding,’’ or SPACE. SPACE
leverages randomly arrayed lanthanide transducers as photonic en-
coders to capture various excitation wavelengths in a single image,
recorded by a charge-coupled device. This approach enables the
reconstruction of multiple scenes from this encoded image across
four wavelength channels: X-rays (0.089 nm), ultraviolet (375 nm),
and two near-infrared bands (808 and 1,532 nm), with the ability
to expand to more channels through multi-layer encoders. SPACE
enables multi-channel imaging for depth visualization and multi-
spectral X-ray analysis, offering broad multi-spectral sensitivity
and on-chip compatibility. This makes it a versatile tool for applica-
tions in materials characterization, bioimaging, remote sensing, and
astronomy.
multi-layer encoders or by

controlling the material thickness.

This method enables multi-depth

visualization and has the potential

for multi-spectrum X-ray imaging.

Future efforts should focus on

enhancing detection efficiency of

multi-wavelength imaging

sensors. Ultracompact, multi-

wavelength imaging sensors hold

promise for diverse applications,

including wearable microscopes,

mobile-phone-integrated

cameras, and industrial

automation.
INTRODUCTION

Multi-wavelength, multi-channel, and multi-depth imaging technologies have revo-

lutionized scientific research and industrial applications, enabling precise three-

dimensional reconstruction and comprehensive information representation of target

objects.1–5 These technologies capture unique characteristics of target objects

across various wavelength bands, encompassing ultraviolet (UV), visible light, and

infrared (IR) ranges. By employing diverse wavelengths of light to illuminate different

sample sections, simultaneous multi-wavelength excitation permits the acquisition

of multiple depth images. However, challenges arise from the sequential switching

of excitation wavelengths and filters, leading to issues in terms of image acquisition

speed and the inability to simultaneously observe synergistic and multi-depth infor-

mation. Proposed solutions, involving complex beam splitting via multiple optical

components, diffractive optical elements, metasurfaces, or multi-spectral filters,

tend to escalate system dimensions, complexity, and costs.6–9 Therefore, despite

rapid advances in optical imaging and dispersive systems, their direct combination

results in a cumbersome setup that hinders the practical implementation of multi-

wavelength and multi-channel imaging. Moreover, most existing methods are

limited to the visible band, and the realization of a multi-wavelength imaging system

spanning near-IR (NIR; I and II), visible, UV, and X-rays remains beyond the reach of

conventional optical components. While various cameras are available for specific

wavelength ranges, such as X-ray imaging panels (10–150 keV), silicon-based
Matter 7, 1–17, July 3, 2024 ª 2024 Elsevier Inc. 1
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imaging sensors (300–1,100 nm), and InGaAs-based NIR detectors (800–1,700 nm),

achieving comprehensive imaging from X-ray to NIR involves integrating these three

types of cameras. This integration necessitates complex dispersion and connection

systems and often entails substantial cost, particularly when incorporating X-ray im-

agers. Moreover, despite the prevalence of traditional silicon-based imaging sen-

sors with millions of pixels, the creation of compact yet numerous pixels is a chal-

lenging task when dealing with special spectral bands such as NIR II and X-rays.

Therefore, the pursuit of an all-in-one imaging sensor capable of accommodating

multiple wavelengths while maintaining high resolution is a formidable challenge.

Lanthanide materials have recently sparked considerable interest due to their lumi-

nescence properties, facilitating light sensitization and emission across a broad

spectrum of wavelengths. Moreover, their ability to interact with organic com-

pounds makes them highly versatile as upconversion and downshifting transducers

in diverse applications.10–14 We hypothesize that lanthanide transducers, with

readily adjustable narrow excitation and emission bands, substantial Stokes/anti-

Stokes shifts, and excellent optical and chemical stability, could serve as wave-

length-selective components for multi-wavelength imaging from X-rays to the NIR

region.15–17 In our endeavor to integrate multiple wavelength detection pixels, we

have introduced an imaging technique named ‘‘stochastic photoluminescence and

compressed encoding’’ (SPACE). This technique involves processing photolumines-

cence materials into a sparse random array and subsequently combining a com-

pressed sensing (CS) imaging strategy to reconstruct the complete image. By

utilizing SPACE, we envision the development of a versatile ultrabroad-band,

multi-wavelength compressed imaging sensor. Specifically, stochastic photolumi-

nescence involves the utilization of screen-printed random patterns of luminescent

materials that can be excited by light across a wide range of wavelengths. Com-

pressed encoding captures essential multi-wavelength data using a reduced set of

measurements, guided by deep learning algorithms.18–24 This integrated approach

enables efficient multi-wavelength, multi-channel imaging by extracting diverse

spectral information from a minimal dataset.
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RESULTS

As a proof of concept, we selected four lanthanide-doped luminescent materials as

transducers. Each transducer converted a specific wavelength, including UV

(375 nm), NIR I (808 nm), NIR II (1,532 nm), and X-rays (0.089 nm), into visible light

detectable by a common Si-based charge-coupled device (CCD; Figure S1). Each

transducer forms a randomly distributed arrays of pixels, with four such arrays com-

plementing each other. Although each array contains the same number of pixels

(25% each), their positions are distinct, ultimately forming a complete array. A filter

film was used to eliminate the excitation light. They were then integrated with a com-

mercial CCD, constructing an active multi-wavelength-encoded imaging sensor

(Figures 1A and 1B). In our multi-wavelength-encoded imaging sensor, each

randomly arranged transducer array undersampled the object image and converted

its specific wavelength into the visible range. Each type of transducer is randomly

distributed and occupies only 25% of the total pixel array of the material layer.

Therefore, when an image tagged with a specific wavelength (e.g., 375 nm) is inci-

dent on the transducer array, only the image intensity at the pixel positions of the

transducers excited by that wavelength can be collected. Consequently, the image

of each wavelength channel is only captured by 25% of the pixels, indicating under-

sampling for each channel. The CS reconstruction algorithm was applied to recover

structural information of each wavelength channel from the undersampled
2 Matter 7, 1–17, July 3, 2024
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Figure 1. Multi-wavelength imaging sensor through stochastic photoluminescence and

compressed encoding (SPACE)

(A) Design of the multi-wavelength imaging sensor based on randomly arrayed lanthanide

transducers. Optical encoders, consisting of a variety of lanthanide transducers sensitive to distinct

incident wavelengths, encode and convert images acquired through X-rays, UV, and near-infrared

light, making them detectable by a charge-coupled device (CCD). A filter is placed under the

encoders to remove excitation light.

(B) Photograph of a multi-wavelength imaging sensor fabricated by integrating optical encoders

onto a CCD. The inset shows a section of the microscope image of randomly arranged lanthanide-

transducer-based optical encoders.

(C) Conceptual scheme of the multi-wavelength imaging, taking four wavelength channels as an

example. The four images tagged with four wavelengths are incident on the multi-wavelength

imaging sensor simultaneously, and active optical encoders composed of four randomly arrayed

transducers encode the four images in different sampling manners and then transmit the

luminescence images to the CCD for detection. Finally, the CCD detects one image that is the

superimposition of the four encoded images. The encoded images measured by the CCD and

the coding mask matrix are fed into a trained deep neural network, which outputs four

reconstructed images.
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image.25–30 Instead of directly acquiring the sections of an object tagged with

different wavelength, our multi-wavelength-coded imaging sensor acted as a

computational pre-processor, encoding and extracting relevant information from

the image.31–33 The computer then works as a post-processor, reconstructing multi-

ple images through a specific algorithm.34–38

Specifically, the designed optical encoder, consisting of random arrays of four types

of lanthanide transducers, captured four images tagged with different wavelengths.

The CCD integrated under the encoder collected the luminescence from the trans-

ducers, resulting in a coded image containing the relevant information of the four

images (Figure 1C). The designed random patterns of the encoder and the collected

encoded images were then fed into a trained end-to-end machine learning recon-

struction network,18,39 generating four complete reconstructed images. Our

concept greatly reduces the resolution requirements for the camera while
Matter 7, 1–17, July 3, 2024 3
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expanding the wavelength coverage of the imaging sensor. In a multi-wavelength-

encoded imaging sensor aimed at acquiring C images with distinct wavelengths,

each containing N pixels, a camera with N pixels is required. The number of encod-

ing pixels, randomly arranged for each wavelength, is N/C. Subsequently, CS algo-

rithms are applied to reconstruct images for each wavelength with N pixels. In

contrast, traditional color cameras employ a regular pattern for filter pixels. Thus,

obtaining C images with N pixels for different wavelengths necessitates a camera

with N 3 C pixels. To obtain images with the same pixel resolution, our multi-wave-

length-encoded imaging sensor delivers substantial efficiency, reducing the

required number of pixels by a factor of C compared to traditional color cameras

(Figure S2). Moreover, the camera’s detection extends from X-rays to NIR II wave-

lengths, enabled by lanthanide transducers.

To demonstrate the feasibility of SPACE for multi-wavelength imaging, we fabri-

cated an active optical encoder using a screen-printing process, consisting of four

types of randomly arranged lanthanide transducers with a pixel size of approxi-

mately 60 mm (Figures 2A, S3, and S4). Under the excitation of X-rays and specific

wavelengths (375, 808, and 1,532 nm), these transducers emitted visible light (Fig-

ure 2B). To mitigate the impact of UV radiation on other luminescent materials,

the image at 375 nm can be acquired by capturing the afterglow image. We built

an imaging system incorporating a light-combining prism group, an adjustable im-

aging lens group, and a designed multi-wavelength-coded sensor to capture sepa-

rate images by continuously switching excitation wavelengths (Figure 2C). System

parameters used in experiments are described in the Methods section. An image

can be represented as a two-dimensional matrix. Stacking the columns of the matrix

gives a vector x ˛N2 3 1, whereN is the height and width of the image in pixels. For

one type of transducer, undersampling an image by an N 3 N random array can be

mathematically equivalent to linearly multiplying the vector x by a measurement ma-

trix F ˛M 3 N2, where M/N2 is the compressed sampling rate. We obtained a vec-

tor y with onlyM pixels. CS reconstruction involves reconstructing the original image

x from y and F. In our configurations, F is an identity matrix with certain rows

removed, resulting in a fat matrix with only one 1 in each row and zeros elsewhere.

To improve reconstruction performance and speed, we employed an end-to-end

machine learning algorism instead of traditional iterative-based CS reconstruction

algorithms, which are more effective for dense measurement matrices. Specifically,

an iterative shrinkage-thresholding algorithm network (ISTA-Net) was used. In this

network, all parameters are learned in an end-to-end manner instead of manual

configuration (Figure S5).39 The network takes compressed measurement images

corresponding to four wavelengths and the measurement matrix corresponding to

the encoder as inputs. Subsequently, it produces four complete reconstructed im-

ages (Figure 2D). These reconstructed images accurately depict the content of ob-

jects, including onion cells with an approximate size of 200 mm (Figure 2D). The slight

blurring of the image tagged with the 375 nm wavelength compared to others is

attributed to the smaller size of onion cells (approximately 200 mm), necessitating

a higher-resolution imaging system for clearer images. Notably, to reduce the strin-

gent requirements for computer memory, each image was divided into smaller sub-

images measuring 100 3 100 pixels. These sub-images were then reconstructed

sequentially and stitched together to form the complete image.

Upon analyzing the spatial frequency of reconstructed glass-sphere images (700 3

700 pixels), we observed that all important high-frequency information was recon-

structed (Figure 3A). Despite the non-sparse intensity distribution, a majority of
4 Matter 7, 1–17, July 3, 2024
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Figure 2. Multi-wavelength imaging with four sets of stochastically printed lanthanide transducers

(A) Microscope image showing a section of optical encoders fabricated with stochastically printed lanthanide transducers (scale bar, 600 mm).

(B) Luminescence photograph of optical encoders excited at various wavelengths (375, 808, and 1,532 nm, and X-rays) with unique random coding

schemes.

(C) Schematic of the experimental setup and imaging principle, illustrating the correspondence between different light sources, samples, and lens

group adjustments. System parameters used in experiments are described in the Methods section. Images from each wavelength channel are encoded,

collected using the multi-wavelength imaging sensor, and processed on a computer. The encoding process involves linear multiplication between the

measurement matrix 4 (encoder representation) and image vector x, resulting in a compressed measurement vector y. Reconstruction of the original

image x from y and 4 is accomplished using a machine learning algorithm.

(D) Imaging results of the four wavelength channels, displaying encoded and reconstructed images.

(E) Zoomed intensity map of the image enclosed within the yellow box in (D).
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coefficients in the wavelet domain are zero, indicating the potential for further

compression of the glass-sphere image. This was also supported by the results of

higher-order wavelet transforms. The low-frequency sub-band (175 3 175 pixels)

obtained after applying a level 2 wavelet transform occupies only 1/16 of the original

image size. However, it still preserves significant information about the image con-

tent. Therefore, it is theoretically possible to extend the wavelength channel further,

enabling accurate reconstruction of images compressed at a 10% sampling rate

(Figure S6).

It is important to note that the pixel size of the encoder (�60 mm) does not directly

represent image resolution because the CCD has a smaller pixel size (<5 mm). To
Matter 7, 1–17, July 3, 2024 5
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Figure 3. Performance of multi-wavelength imaging through SPACE

(A) Reconstructed glass-sphere image analyzed with level 1 and level 2 wavelet transforms. The wavelet transform divides the input image into low-

frequency and high-frequency components using a wavelet function. The high-frequency components are further divided into horizontal (H), vertical (V),

and diagonal (D) components through wavelet decomposition. Two histograms illustrate the amplitude distribution in the intensity domain (top) and

the wavelet domain (bottom) of the image. The inserted images show the low-frequency components after level 1 and level 2 wavelet transforms of the

reconstructed image (700 3 700 pixels), indicating successful compression even at a 1/16 compression rate.

(B) Reconstruction results of the ‘‘peppers’’ image, considering and not considering the multiple CCD pixels covered under each encoder pixel. This

includes comparisons between the traditional compressed sensing reconstruction algorithm, orthogonal matching pursuit, and the machine learning

reconstruction algorithm ISTA-Net.

(C and D) Peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), respectively, between reconstructed images under different

light source powers and the best image. Data are presented as mean values G SEM, processed from 10 measurements at each power.
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demonstrate how image resolution is determined by CCD size, we conducted sim-

ulations where the standard image ‘‘peppers’’ (a commonly used test image in the

field of image processing; Figure S7) was compressed and reconstructed using

different encoding masks and algorithms. Sampling the image at the pixel size of

the encoder mask resulted in a reconstructed image of 231 3 231 pixels using

ISTA-Net, with a peak signal-to-noise ratio (PSNR) of 28.93 compared to the original

image (Figures 3B and S7). In contrast, if we consider that each encoder mask pixel

covers 3 3 3 CCD pixels, a higher-resolution image (700 3 700 pixels) can be ob-

tained with an equivalent PSNR of 31.26. Moreover, due to the measurement ma-

trix’s insufficient density, the traditional CS reconstruction algorithm (orthogonal

matching pursuit) cannot effectively reconstruct the image. The primary factor
6 Matter 7, 1–17, July 3, 2024
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affecting image reconstruction is the presence of image noise, which largely de-

pends on the light intensity. As the power of the light source gradually decreases,

the PSNR and structural similarity index measure (SSIM) of the reconstructed image

also decrease compared to the image with the highest quality (Figures 3C and 3D).

X-ray images are minimally affected by power, whereas images based on upconver-

sion transducers are more sensitive to power variations. Additionally, under low-

light conditions, SSIM tends to decrease more significantly than PSNR. This is

because PSNR primarily quantifies the level of noise or distortion between an image

and its original version. In contrast, SSIM is a metric used to evaluate the structural

similarity between two images, considering various elements such as luminance,

noise, and contrast, all of which collectively contribute to its measurement.

A monochrome CCD is sufficient for simultaneously reconstructing four images

tagged with four different wavelengths. When combined with a color RGB CCD,

lanthanide transducers with varying emission wavelengths allow for the realization

of a multi-layer, multi-wavelength-coded imaging sensor, theoretically increasing

the number of wavelength channels by 3-fold. To demonstrate this concept, we de-

signed a double-layer optical encoder, with each layer containing two types of

randomly arranged lanthanide transducers (Figure 4A). Specifically, the transducers

excited by 375 nm radiation emit green light, while those excited by 1,532 nm light

emit red light. Both types of transducers are stacked in a random array. Moreover,

the transducers excited by 808 nm radiation emit blue light, and those excited by

X-rays emit green light. These two types of transducers are also stacked in a random

array (Figure 4B). The double-layer encoder captures images from all four wave-

length channels but with a sampling ratio of 50%, meaning that the number of pixels

for each type of transducer is doubled. A higher sampling rate yields better recon-

struction results, but the stacked configuration increases susceptibility to light scat-

tering (Figures 4C and S6). Therefore, the multi-layer, multi-wavelength-coded im-

aging sensor combined with an RGB CCD is better suited for applications

requiring a greater number of wavelength channels.

We next developed a system for multiple-depth imaging by illuminating different

parts of a sample with light of varying wavelengths. This approach allows us to

simultaneously obtain depth images using multiple wavelengths. As a proof of

concept, we constructed an imaging system that utilizes three wavelengths of light

to capture images at various depths within the sample, while X-rays are used to

acquire interior images (Figure 5A). In the experiment’s standard setup, with the

image distance set at 200 mm, we find that the focal distances for 375, 808, and

1,532 nm light are 20.4, 21.7, and 22.4 mm, respectively. Each imaging session po-

sitions the sample’s top surface at the theoretical focal plane corresponding to the

375 nm wavelength. Concurrently, the imaging at 808 and 1,532 nm wavelengths

is designed to capture images at depths of 21.7 and 22.4 mm, respectively. When

imaging a dragonfly’s wings and partial torso, different wavelengths of light can

focus on and magnify structures at different depths. However, the torso remains

impenetrable to light. Conversely, X-rays can visualize the interior of the torso,

but the wing structure lacks clear imaging due to insufficient absorption contrast

(Figure 5B). Further, when we raised the sampling rate to 50%, we employed an

encoder containing only two materials excited by 375 and 808 nm radiation to cap-

ture images of the sample at different depths. The experimental setup and focal

depth remain unchanged (Figure 5A). The reconstruction algorithm, based on neu-

ral networks, effectively reconstructed images of the two depths (Figure 5C). For

example, in the image of a glass sphere, the 375 nm radiation focused and
Matter 7, 1–17, July 3, 2024 7
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Figure 4. Multi-wavelength imaging using multi-layer optical encoders

(A) Schematic comparison of a single-layer and a double-layer active optical encoder. In the single-layer encoder, four sets of lanthanide transducers are

randomly distributed to complement each other, with each CCD pixel covered by only one type of transducer, making a monochrome CCD sufficient.

Each transducer array randomly samples the image with a 25% compressed sampling ratio. In the double-layer encoder, each layer contains two types of

randomly distributed transducers, with different luminous colors stacked up and down. Each CCD is covered with two types of transducers,

necessitating the use of a color RGB CCD. As a result, each transducer captures images with a 50% compressed sampling ratio.

(B) Emission spectra of the four transducer materials under X-ray or 375, 808, or 1,532 nm excitation.

(C) Imaging results of the four wavelength channels, comprising encoded and reconstructed images.
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magnified the structure at the sphere’s focal plane, while the 808 nm radiation

focused and magnified deeper structures.

We also discovered that by controlling the thickness of the scintillator layer, the

optical encoder can capture high-energy radiation across multiple wavelengths

or energy levels. The photoelectric absorption coefficient of the scintillator exhibits

a sharp decrease with increasing photon energy. Consequently, the attenuation

thickness differs for KeV X-rays and MeV gamma rays, measuring at sub-millimeter

and centimeter levels, respectively (Figure 5D). To explore this, we fabricated an

optical encoder comprising randomly arranged pixel arrays with two thicknesses:

200 mm and 2.5 mm. The 200-mm-thick pixel array shows a light output ratio,

exceeding 105, between X-ray excitation (�15 keV) and gamma-ray excitation

(6 MeV). In contrast, the random pixel array with a thickness of 2.5 mm exhibits

a light output ratio exceeding 105 between gamma-ray excitation and X-ray exci-

tation (Figure 5E). By utilizing a sampling rate of 50%, we reconstructed the X-ray
8 Matter 7, 1–17, July 3, 2024
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Figure 5. Multi-wavelength and multi-depth imaging by controlling the thickness of the optical encode layer

(A) Schematic diagram of the experimental setup for multi-channel imaging. An aberration lens L1 collects light of various wavelengths at different

sample depths, which is then transmitted to the detector. X-rays, capable of penetrating the entire sample, are also sent to the detector. System

parameters used in experiments are described in the Methods section.

(B) Reconstructed images of dragonfly wings and partial torso simultaneously imaged at four wavelengths, with a compression ratio of 25% for each

wavelength channel. The white and yellow dotted boxes mark the typical complementary structural information obtained from different channel

images.

(C) Reconstructed images of dragonfly wings and glass spheres simultaneously imaged at 375 and 808 nm, with a compression ratio of 50% for each

wavelength channel. The white and yellow dotted boxes mark the typical complementary structural information obtained from different channel

images. For example, the 375 nm wavelength image focuses and magnifies the structure at the focal plane of the sphere, while the 808 nm wavelength

image focuses and magnifies the deeper structure.

(D) Calculated light output of scintillator layers with different thicknesses under X-ray (�15 keV) and gamma-ray (6 MeV) irradiation.

(E) Optical encoder specifically designed for imaging both X-rays (pixel thickness: �200 mm) and gamma rays (pixel thickness: �2.5 mm). In thin pixels,

the ratio between X-ray and gamma-ray radioluminescence output is approximately 105. Similarly, in thick pixels, the ratio of gamma-ray to X-ray

radioluminescence output is approximately 105.

(F) Reconstructed images of a stencil under X-rays and spot shape under gamma rays, with a compression ratio of 50% for each channel.
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image of a stencil and the gamma-ray beam shape from medical radiotherapy

equipment (Figure 5F).
DISCUSSION

In conclusion, our utilization of SPACE presents a solution to overcome the con-

straints of existing multi-wavelength imaging technologies. Our active multi-wave-

length-coded imaging sensor, which incorporates randomly arrayed lanthanide

transducers and a CS deep learning reconstruction algorithm, enables high-quality

simultaneous imaging across a broad spectrum of wavelengths. This approach re-

duces camera resolution requirements and simplifies electronic post-processing.

The combination of active optical encoders and CS not only allows for imaging

with fewer pixels but also results in lower photon counts, higher throughput, and

reduced latency. The SPACE approach is also applicable to various multi-channel

imaging techniques, such as multi-lifetime, multi-polarization, and multi-phase im-

aging,40 with potential use in fields like biomedical imaging, food and agriculture,

materials science, and geological and mining exploration, among others.

The image captured with 375 nm light relies on the residual luminescence emitted by

transducers, as other materials also respond to this excitation. This demonstration

highlights a key advantage of using transducer materials in multi-wavelength imag-

ing as encoders: the ability to utilize the different luminescence lifetimes of materials

to expand the number of wavelength channels available. However, for high-dy-

namic-range imaging, it would be ideal to use transducer materials that exhibit

entirely distinct luminescence emissions under different excitations. In addition, it

is important to acknowledge that our current detection sensitivity, as proven

through a random array of lanthanide-doped transducers at high concentrations, al-

lows imaging using conventional visible light cameras at an approximate power of 15

mW/cm2. Nevertheless, this level of sensitivity may not support multi-wavelength

imaging under extremely low-light conditions due to the limited efficiency of the

luminescent materials used. Future work should focus on enhancing detection

efficiency in three key areas: improving luminescent efficiency through materials en-

gineering, employing more efficient energy conversion systems, and leveraging op-

tical engineering techniques to compensate for material limitations.41 Moreover, the

efficiency of photodetectors can be further enhanced with the use of high-quality im-

age sensors featuring low electronic noise. Despite the existing limitations, the

development of ultracompact, multi-wavelength imaging sensors opens possibil-

ities for advanced imaging applications and holds the potential for advancements

across diverse sectors, including wearable microscopes, mobile-phone-integrated

hyperspectral cameras, and industrial automation.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Professor Xiaogang Liu (chmlx@nus.edu.sg).

Materials availability

Gd2O2S:Tb
3+ and SrAl2O4:Eu

2+/Dy3+ phosphors were purchased from Xiucai

Chemical (Foshan, China). NaYbF4:Yb
3+/Er3+ phosphors were purchased from Zhan-

wanglong Technology (Shenzhen, China). NaYF4:Yb
3+/Tm3+@NaYF4:Yb

3+/Nd3+

phosphors were synthesized according to the method described in the literature,

with some modifications42 (Figure S1).
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Data and code availability

All relevant data that support the findings of this work are available from the corre-

sponding author upon reasonable request.

Characterizations

Gd2O2S:Tb
3+, a gadolinium oxalate crystal doped with Tb3+ ions, emits green light

when exposed to X-rays. The luminescencemechanism is based on the absorption of

X-ray energy by Gd3+ ions, causing internal electrons to transition from the ground

state to excited states. Energy transfer then occurs from the excited Gd3+ ions to

Tb3+ ions, leading to radiative transitions of the excited Tb3+ ions back to their

ground state. Photons are released during this process, and the transition between

the 5D4 and 7FJ (J = 6, 5, 4, 3) energy levels of Tb3+ ions produces visible light at

about 489, 543, 586, and 619 nm.43,44 This material emits a bright green color

when excited by X-rays.

When NaYbF4:Yb
3+/Er3+ transducers are excited with 1,532 nm radiation, the Er3+

ions absorb the photons and transition to a higher energy state. Subsequently,

the excited Er3+ ions transfer energy to neighboring Yb3+ ions or Er3+ ions, promot-

ing them to an excited state. Next, the excited Yb3+ or Er3+ ions transfer energy to

other ground-state Er3+ ions, facilitating their transition to even higher energy

states. Finally, the excited Er3+ ions return to their ground state through radiative

transition, emitting red at approximately 660 nm.45,46

NaYF4:Yb/Tm@NaYF4:Yb/Nd transducers emit blue light under 808 nm excitation.

The luminescence mechanism involves the absorption of 808 nm photons by Nd3+

ions, which then transfer energy to neighboring Yb3+ ions, promoting them to an

excited state. The excited Yb3+ ions further transfer energy to Tm3+ ions, possibly

by multiple energy transfer, resulting in highly excited Tm3+ ions. These excited

Tm3+ ions then return to their ground state through radiative transition between

the 1D2 and
3F4 energy levels of Tm3+ ions, generating blue light at approximately

475 nm.

The luminescence of SrAl2O4:Eu
2+/Dy3+ transducers is likely governed by an elec-

tron-trapping mechanism.47 This mechanism involves the excitation of Eu2+’s 5d

electron to the host’s conduction band, resulting in the generation of Eu3+ and

the capture of this electron by Dy3+, causing its reduction to Dy2+. In this context,

the trapped electron can be thermally released and subsequently recombine with

Eu3+ to produce delayed luminescence. At room temperature, the emission spec-

trum shows a characteristic broad band centered at 520 nm attributed to Eu2+, cor-

responding to the electric-dipole-allowed 4f-5d transition.

Methods

Fundamental principle of SPACE

To illustrate the process of how a luminescent material array samples an intensity im-

age, we can use an example of a specific wavelength channel, such as the

SrAl2O4:Eu
2+/Dy3+ material array responding to 375 nm. The complete intensity im-

age with N 3 N pixels encoded with the 375 nm radiation can be represented by a

two-dimensional matrix I ˛ N 3 N. When the intensity image is incident on the

randomly arranged luminescent material array, the array samples the image in a

random and undersampled manner. This sampling process can be described by a

sampling matrix 4, which represents the locations of the luminescent materials in

the array. The image collected by the CCD is the result of linear multiplication of

the complete intensity image I and the measurement matrix 4, which represents
Matter 7, 1–17, July 3, 2024 11
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the sampling process of the luminescent material array. This process can be

described as a matrix equation:

H = I $ 4; (Equation 1)

where H is the measured image by CCD.

In the array of luminescent materials, the pixels that do not respond to the 375 nm

excitation light do not emit light. Therefore, the measurement matrix 4 has a value

of 0 at those positions and 1 at the pixel positions that respond to the 375 nm exci-

tation. If the N 3 N pixels in the intensity image are equally divided into four wave-

length channels, then the number of pixels with a value of 1 in the measurement ma-

trix 4 isM = N2/4 (Figure S3). This means that in the image Hmeasured by the CCD,

onlyM pixels are useful and contain the image information, while the other values are

all 0 and can be removed. By removing the redundant 0 values, we can effectively

reduce the size of the image and improve the efficiency of image processing.

In practice, a large number of images need to be processed. To simplify the calcu-

lations, the image matrix I is treated as a vector x ˛ N2 3 1 by stacking the columns

of the matrix I. The measurement matrix 4 is transformed into x ˛ M 3 N2, where

each row has only one pixel with a value of 1 and the others are all 0. Accordingly,

the image H collected by the CCD can be represented as a vector y ˛ M 3 1 and

expressed as

y = x $ x + e; (Equation 2)

where e is the noise. The objective of various CS reconstruction algorithms is to solve

for complete image x in terms of y and x.

ISTA-Net

Given the measurements y, the traditional CS reconstruction algorisms usually

reconstruct the original image x by solving the following (generally convex) optimi-

zation problem:

min
x

1

2
kxx � yk22 + lkcxk1: (Equation 3)

Here,Jx denotes the transform coefficients of x with respect to some transformJ,

and the sparsity of the vector Jx is promoted by the [1 norm. l is a generally pre-

defined regularization parameter that controls the trade-off between the sparsity

of Jx and the fidelity of the reconstructed image.

The ISTA is a first-order proximal method that solves the CS reconstruction problem

in Equation 3 by iterating between the following update steps:

r ðkÞ = xðk� 1Þ � rxT
�
xxðk� 1Þ � y

�
(Equation 4)
xðkÞ = argmin
x

1

2

��x � r ðkÞ
��2

2
+ lkcxk1: (Equation 5)

Here, k denotes the ISTA iteration index and r is the step size (Figure S5).

The choice of a sparse transformationJ plays a critical role in the performance of the

CS reconstruction. The commonly used transforms include the wavelet transform,

the discrete cosine transform, and the Fourier transform. In the ISTA-Net approach,

a general non-linear transform function was used to sparsify natural images, denoted

by H($), with learnable parameters. H($) was designed as a combination of two linear
12 Matter 7, 1–17, July 3, 2024
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convolution operators (without bias terms) separated by a rectified linear unit. By re-

placing J in Equation 5 with H($), it becomes

xðkÞ = argmin
x

1

2

��x � r ðkÞ
��2

2
+ lkHðxÞk1: (Equation 6)

x(k) can be efficiently computed in closed form as

xðkÞ = ~H
�
soft

�
H
�
r ðkÞ; q

��
; (Equation 7)

where q = la; a is a scalar that is only related to the parameters of H($). q, as a

shrinkage threshold, is a learnable parameter. ~Hð $Þ is designed to exhibit a structure

symmetrical to H($).

Each module in each phase of ISTA-Net corresponds to the update steps in an ISTA

iteration. The learnable parameter set in ISTA-Net consists of the step size r(k) in the

r(k) module, the parameters of the forward and backward transforms H($), and the

shrinkage threshold q(k) in the x(k) module.

The end-to-end loss function for ISTA-Net is as follows:

L =
1

NbN

XNb

i = 1

����xðNpÞ
i � xi

����
2

2

+g
1

NbN

XNb

i = 1

XNp

k = 1

��� ~HðkÞ
�
HðkÞðxiÞ

�
� xi

���2

2
;

(Equation 8)

whereNp,Nb,N, and g are the total number of ISTA-Net phases, the total number of

training blocks, the size of each block xi, and the regularization parameter,

respectively.

Configurations of all algorithms

We began by downloading the T91 Image Dataset from the Kaggle platform, which

consists of 91 images. Each image was enlarged by a factor of 3 and then cropped

into approximately 60,000 sub-images with a pixel size of 100 3 100. Adjacent sub-

images have an overlap of 75 pixels. These 60,000 sub-images were used as the

training dataset for ISTA-Net. ISTA-Net was implemented in Python 3.7 using Ten-

sorflow 1.13.1 as the operating environment and Pycharm as the integrated devel-

opment environment. All experiments were conducted on a workstation equipped

with an E5-2680V3 CPU and an RTX 2080 Ti GPU. The standard dataset Set11

was used for testing, which contains 11 grayscale images with multi-wavelength

channels. The orthogonal matching pursuit algorithm was compiled using

MATLAB2020a.

Training and reconstruction process

Specific training steps involve generating a corresponding measurement matrix 4

based on the given compressive sensing ratio and the designed pattern of a

randomly distributed encoding matrix. The size of the matrix 4 is M 3 N, where

N = 10,000, meaning that each sub-image has a size of 1003 100.M =C3N, where

C represents the compression ratio. Applying y = 4x produces a set of CS measure-

ments, where x is the vectorized version of sub-image blocks. The original image x

and the corresponding sparse measurement data y constitute the training dataset.

The network architecture used and the definition of the loss function are described

in the section ISTA-Net. The training dataset, i.e., the original image x and sparse

measurement data y, are provided as inputs to the neural network. The network

maps the y to a reconstructed image ~x through forward propagation. The network

employs a loss function to evaluate the quality of the reconstructed image ~x

compared with x and utilizes the backpropagation algorithm to compute gradients.
Matter 7, 1–17, July 3, 2024 13



ll

Please cite this article in press as: Yi et al., X-ray-to-NIR multi-wavelength imaging through stochastic photoluminescence and compressed en-
coding, Matter (2024), https://doi.org/10.1016/j.matt.2024.02.014

Article
Subsequently, the network’s weights and biases are updated using the gradient

descent to minimize the loss function. These steps are repeated iteratively to train

the neural network, with a training duration of 100 epochs. Once the training is

complete, we can use the trained neural network to perform compressive sensing

reconstruction on new measurement data y, generating high-quality reconstructed

images ~x. Unlike random initialization of ~x, a linear mapping matrix is used here,

which is learned from training data pairs of CS measurement data and the corre-

sponding image blocks. This matrix is then employed to compute the initial estimate

of the image for the compressive sensing reconstruction process.

Fabrication of multi-wavelength compressed imaging sensors

Screen printing is a widely employed printing method to transfer intricate designs

onto various substrates, including textiles, ceramics, glass, and other materials. First,

the stencil is designed with a random hole array for every wavelength channel. Using

computer-aided design software, four different digital stencils are created for four

different materials. The stencils are fabricated using a precise laser cutting process

and have a thickness of 30 mm. Then, a flat glass substrate coated with transparent,

high-quality double-sided adhesive is used as a processing base (Figure S4). The

stencil is carefully positioned on the glass substrate to ensure proper alignment.

Subsequently, a uniform layer of 100% powder is evenly spread onto the stencil.

The powder is then pressed firmly to fill the template pattern and adhere to the dou-

ble-sided tape on the glass substrate. Following the purging of the template with ni-

trogen to remove any loose powder residue, the stencil is gently removed.

After screen printing a single array of optical materials onto a glass substrate coated

with double-sided tape, the process was repeated to create the second, third, and

fourth arrays of optical materials, each designed to respond to different wave-

lengths. To ensure proper alignment of subsequent arrays, the layer deposited on

the glass substrate is placed on the mask holder of a mask aligner (URE-2000/17).

The arrays are manually aligned using the x, y, and tilt axes. The aligned array is

then pressed to ensure that the plane is flat, and finally, the sample is removed

from the aligner. A 200-mm-thick layer of PDMS is applied to the sample and heated

to 60�C after vacuuming. Once solidified, the PDMS, featuring four imprinted pat-

terns, is peeled off from the glass substrate, resulting in an approximately pow-

der-to-PDMS ratio of 4:1 in each pixel.

Typical imaging system parameters used in experiments

In the system depicted in Figure 2, samples imaged at each wavelength are captured

separately. The light-combining group consists of three broadband beam splitters

(BSW29, Thorlabs). The lens system comprises a Nikon Plan Fluor 103 microscope

objective and a Canon EF 100 mm f/2.8 macro lens, with approximately 25 cm

spacing between the two lens groups. These are followed by the designed imaging

sensor. The lenses are removed during X-ray imaging.

In the imaging system depicted in Figure 4, the light-combining group consists of

three broadband beam splitters (BSW29, Thorlabs). The imaging portion comprises

an objective lens L1 and imaging lenses L2. The specific number of lenses, their pa-

rameters, and axial chromatic aberration should be determined based on the

required magnification, resolution, and imaging performance depending on

the actual application needs. In the typical experimental setup used for demonstra-

tion, we designed an imaging system with an overall magnification factor of �4

(magnification varies for different wavelengths). This system includes an imaging

objective lens L1 with a numerical aperture of approximately 0.2, and lens L2 is a
14 Matter 7, 1–17, July 3, 2024
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concave-convex lens with a focal length of approximately 200 mm (the focal length

varies for different wavelengths). The distance between the lenses is approximately

135 mm. The object is placed at approximately 20 mm from the objective lens. The

light of different wavelengths converges and magnifies the object at different

depths.

Calculated light output of scintillator layers

The photoelectric absorption coefficient a in cm2/g for the GOS:Tb scintillator at

different X-ray energy levels was obtained from the database.47 The density r of

GOS:Tb is expressed in units of g/cm3, so the absorption rate of GOS:Tb can be ex-

pressed as ar, measured in cm�1. The attenuation coefficient for the visible light

generated is denoted as m in units of cm�1. Assuming the total thickness of the scin-

tillator is h, the intensity of visible light produced by the scintillator at depth z and

transmitted to the bottom surface of the scintillator can be described as follows:

I = I0
�
exp½ � arðz � dzÞ� � expð�arzÞ�exp½�mðh � zÞ�; (Equation 9)

where I0 is the initial intensity of X-rays. Therefore, for different thicknesses h, the

overall light transmittance is calculated as

T =

Z h

0

I

I0
dz: (Equation 10)

It should be noted that the above calculations assume that all absorbed X-ray pho-

tons are entirely converted into visible light photons.
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