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ABSTRACT: We investigate the intricate relationship among temperature,
pH, and Brownian velocity in a range of differently sized upconversion
nanoparticles (UCNPs) dispersed in water. These UCNPs, acting as
nanorulers, offer insights into assessing the relative proportion of high-
density and low-density liquid in the surrounding hydration water. The
study reveals a size-dependent reduction in the onset temperature of liquid-
water fluctuations, indicating an augmented presence of high-density liquid
domains at the nanoparticle surfaces. The observed upper-temperature
threshold is consistent with a hypothetical phase diagram of water,
validating the two-state model. Moreover, an increase in pH disrupts the
organization of water molecules, similar to external pressure effects,
allowing simulation of the effects of temperature and pressure on hydrogen
bonding networks. The findings underscore the significance of the surface
of suspended nanoparticles for understanding high- to low-density liquid
fluctuations and water behavior at charged interfaces.

Liquid water is the main constituent of the human body
and covers a majority of the Earth’s surface. It plays a vital

role in a myriad of biological, chemical, physical, geological,
industrial, and environmental processes.1−7 In addition to its
chemical properties as a solvent, proton transfer medium, and
active component of reactions, the physical properties of water
are also fundamentally relevant.8 Although water is the most
commonly used liquid, its complex behavior under varying
pressure and temperature conditions leads to numerous
anomalies in its properties that differ significantly from those
of other commonly used liquids. To date, more than 60
anomalous properties have been reported for water,9−12

including a minimum specific heat at 308 K, a negative
thermal expansion coefficient below 277 K, and a minimum
isothermal compressibility at 319 K.
The underlying reason for these anomalous characteristics is

related to water’s remarkable ability to form strong and
directional hydrogen bonds (H-bonds). As these hydrogen
bonds are constantly breaking and re-forming on a picosecond
time scale, fluctuations occur in the local structure of water,
leading to the emergence of water motifs (or patches) with
different densities.11,12 Today, two contrasting schools of
thought seek to explain the anomalous properties of water by
investigating its structural fluctuations. The continuous
distribution models of water propose a homogeneous
structural distribution caused by thermal fluctuations.13−15

The two-state model, on the contrary, argues that the
anomalies stem from the coexistence of two distinct preferred

local structural arrangements of water molecules that have
different physical properties (e.g., the density differs by
∼20%4): a low-density liquid (LDL) and a high-density liquid
(HDL). These local structures become increasingly well-
defined upon supercooling and begin to contribute around the
compressibility minimum.4,8,11,16 While LDL is an open
tetrahedral configuration with predominantly low-energy H-
bonds, HDL is a network with shorter and highly disordered
H-bonds.16−22

This two-state scenario appears today to be very likely, as
both theoretical23−28 and experimental results29−40 support the
existence of a liquid−liquid critical point located in the
supercooled liquid region of the water phase diagram,
separating a one-phase region from a two-phase region
where the LDL and HDL patches coexist, separated by a
first-order transition line4,11,41−43 (Supporting Information and
Figure S1). The coexistence of these two structural motifs of
water has been observed both in silico41,44−46 and in
experimental21,47−53 works, especially upon supercooling.
Although further experimental evidence for inhomogeneous
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structures of liquid water and fluctuations between HDL and
LDL patches was provided by the isosbestic point in the
temperature-dependent OH stretching Raman signal,54,55

temperature-dependent infrared spectra of liquid water,56

optical Kerr effect measurements,57 and X-ray absorption and
emission spectroscopy,42,47−49,58 the coexistence of these
fluctuations under ambient conditions and their implications
remain elusive and controversial.14,16,21,59−66 Nonetheless,
showcasing two distinct arrangements of water molecules
and their fluctuations is crucial, as it has the potential to
revolutionize our understanding of biochemistry and reveal
that life-supporting conditions may hinge on the presence of
two kinds of H-bond organization in liquid water.1,3,67

Little is known about the topology of liquid water,
specifically regarding the existence of motifs forming the H-
bond networks such as rings, clathrates, and clusters, which,
although numerically proposed through molecular dynam-
ics,45,68−70 have not been experimentally observed. This
knowledge gap arises because techniques commonly employed
to investigate density fluctuations in liquid water and H-bond
network structures are limited to a length scale of ∼1 nm
(Figure 1). Therefore, there is a strong demand for

experimental techniques for microscopically deciphering H-
bond structures in liquid water as well as in aqueous solutions
of electrolytes, suspensions of biomolecules, and inorganic
materials. These systems have garnered more attention due to
their potential to unveil the intricate relationship among
charged interfaces, high- to low-density liquid fluctuations, and
their role in the formation of large-scale H-bond supra-
molecular structures, as suggested by molecular dynamics
simulations of the hydration shell of the lysozyme protein.71

Supramolecular structures of orientationally ordered water as
large as 1 μm have been reported in light scattering
measurements of aqueous solutions of low-molar mass
compounds72−74 and in wide-field second harmonic (SH)

microscopy of divalent cations interacting with water and
negatively charged free-standing lipid bilayers,75,76 although
not explicitly connected to HDL and LDL domains.
In recent years, there has been extensive research into the

temperature dependence of the optical properties of a wide
range of water-suspended materials such as quantum dots,52

plasmonic77 and luminescent78 nanoparticles, organic mole-
cules,79−81 and trivalent lanthanide-based materials,82−84

including upconverting nanoparticles (UCNPs).85−87 The
temperature (T) at which these materials exhibit a notable
change in their optical properties is often termed the crossover
temperature (Tc).

52 It predominantly falls within the range of
320−340 K and coincides with the minimum of the isothermal
compressibility of water.50 Surprisingly, although some of these
measurements have been interpreted in light of the two-state
model of water,52,80 the observed bilinear trend has not been
explicitly attributed to the presence of HDL and LDL motifs or
the fluctuations between them. To the best of our knowledge,
only one research paper has explored the intriguing relation-
ship between the bilinear temperature dependence of the
instantaneous Brownian velocity of NaYF4:Yb/Er UCNPs
suspended in water and the high- to low-density liquid
fluctuations.87 These experimental data, corroborated by
molecular dynamics simulations, elucidated a geometric
phase transition in which the LDL phase percolates below
330 K. Tc, in this context, was interpreted as the onset of
fluctuations between high- and low-density liquid water.87

In this work, we delve into the unique ability of
upconversion nanothermometry88 to measure the temperature
and pH dependence of the Brownian velocity89 of UCNPs of
varying sizes (15−106 nm in diameter) dispersed in water [so-
called nanofluids (section 2 of the Supporting Information)].
We estimate an upper-temperature threshold for the liquid
water density fluctuations in the region dominated by HDL
domains under ambient conditions, which agrees with the
value suggested in the hypothetical phase diagram of liquid
water under ambient conditions (Figure S1).4,8,11,23,31,90 We
also show that increasing the pH of the nanofluids fragments
the LDL domains (the LDL−HDL fluctuations become less
favorable), similar to increasing the pressure in this phase
diagram. Furthermore, our results provide new insights into
the relative proportion of HDL and LDL motifs that coexist in
the hydration water around the particle surface under ambient
conditions. We find that the high- to low-density liquid
fluctuations depend on the size of the suspended nanoparticle
and the pH of the nanofluid. As the size increases, the relative
proportion of HDL domains increases, while as the surface
charge increases (controlled by pH), the relative proportion of
LDL patches increases.
We measured the instantaneous Brownian velocity of 15 nm

[diameter (d)] NaGdF4:Yb/Er(18%/2%)@NaGdF4 core−
shell UCNPs dispersed in water (H2O, pH 5.10), heavy
water (D2O), and ethanol (EtOH) at a volume fraction of
0.085% (Figure 2a and Table S1). The colloidal stability of the
nanofluids and the size distribution of the UCNPs are
presented in Figures S2−S6 and Table S2. The experimental
setup, similar to that in ref 89, is described in sections 2 and 3
of the Supporting Information, Figures S7−S10, and Table S3.
As the solvent density (ρ) increases, the Brownian velocity
decreases because denser liquids have a higher effective mass
(defined as the combined mass of the UCNPs and half of the
liquid mass moving cooperatively with them).91 This is well
illustrated by the difference in density between EtOH and D2O

Figure 1. Infographic of the various techniques used to investigate
anomalies in liquid water across different length scales. The
temperature dependence of the H-bond networks has been explored
at different length scales. While X-ray and neutron scattering,
numerical simulations, and Kerr effect, dielectric, terahertz, ultra-
violet−visible, nuclear magnetic resonance, and Raman spectroscopies
operate at the length scale of hydrogen atoms and water molecules,
SH imaging works at longer scales. Light scattering and luminescence
nanothermometry, as shown in this work, can also be used up to a
submicrometer length scale.
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(781 and 1105 kg m−3, respectively, at 303 K92). The lower
density of EtOH facilitates the faster motion of the UCNPs
within the nanofluid, whereas the higher density of D2O results
in considerably slower motion (Figure 2a). An analogous
density dependence was observed in the Brownian velocity of
UCNPs containing an oleic acid coating and dispersed in
toluene and cyclohexane, where the increase in solvent density
decelerates the motion of particles.87

The Brownian velocity of the UCNPs depends on the
particle size, decreasing by ∼20% when the size increases from
15 to 64 nm and being almost independent of size for larger
values of ≤106 nm, as observed in Figure 2b and Figure S11a.
Due to the same volume fraction used across all colloidal
suspensions (0.085%), smaller particle sizes correspond to a
greater number of UCNPs in the suspensions (Figure S11 and
Table S4). Consequently, this results in an increased Brownian
velocity of the UCNPs with a higher particle count in the
suspension. The number of UCNPs increases by a factor of ∼4
when the particle size decreases from 106 to 64 nm. However,

this increment is far more striking, reaching a factor of 40,
when the size decreases from 52 to 15 nm. The observed
decrease in Brownian velocity as UCNP size increases is
therefore attributed to the dependence of Brownian velocity on
the number of particles per unit of volume in the suspensions
due to the particle−particle interactions. It is noteworthy that
these findings align seamlessly with our earlier observations.89

Notably, the Brownian velocity of the UCNPs in the
aqueous nanofluids exhibits a bilinear trend, regardless of the
size of the particles (Figure 2b). This behavior is attributed to
the presence of two distinct motion regimes for the UCNPs.
When T < Tc (300−330 K), there are HDL fluctuations into
more voluminous LDL regions within the HDL dominant
phase. Consequently, this gives rise to a greater effective mass
of the nanoparticles, resulting in lower Brownian velocity
values. Conversely, when the temperature exceeds the critical
threshold (T > Tc), density fluctuations cease because all LDL
motifs have already been converted into HDL ones. This leads
to a liquid state characterized by localized fluctuations within

Figure 2. Solvent effect and size dependence in the Brownian velocity of UCNPs. (a) Temperature-dependent Brownian velocity of the 15 nm
UCNPs suspended in EtOH, H2O, and D2O. The gray arrow highlights the existence of a crossover temperature in the water-suspended UCNPs
around 330 K, indicating the anomalous behavior of water. (b) Temperature-dependent Brownian velocity of different-sized UCNPs (15−106 nm)
at pH 5.10. (c) Size-dependent crossover temperature of the nanofluids from panel b, where the red dashed line is a guide for the eyes, highlighting
the operating range of sizes that can be used to probe the different motifs of liquid water. The inset presents the dependence of Tc on the surface/
volume ratio (S/V = 6/d). The lines are guides for the eyes.
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the HDL phase, leading to higher Brownian velocity values. It
is worth stressing that the obtained Tc value closely
corresponds with the minimum value of the isothermal
compressibility of liquid water, which is related to the change
from a more to a less organized tetrahedral organization due to
the density increase.50 Once isothermal compressibility
depends on fluctuations in density indicating a relative change
in the volume, the similarity between the Tc values of the
Brownian velocity of UCNPs and the minimum isothermal
compressibility of liquid water is explained by the change in
volume of the HDL and LDL motifs with an increase in
temperature.93

Compared to liquid water, the weaker hydrogen bonds in
ethanol94 result in a continuous linear increase in the Brownian
velocity of UCNPs upon heating. Although the low boiling
point of EtOH limits its study at temperatures above 333 K,
the lack of tetrahedral arrangements means that Tc is not
expected to occur.95 While HDL and LDL motifs have also
been identified in liquid D2O,

96,97 the presence of isotopic
quantum effects generates a more ordered structure that
enhances thermodynamic stability,98,99 displacing the Widom
line toward higher temperatures (4 K at ∼0 bar).31 The
melting point (4 K), maximum density (7 K), isothermal
compressibility (5 K), nuclear quantum effects (5 K), and
viscosity (−6.5 K) also exhibit a temperature offset in D2O
relative to the values in H2O.

100−104 Then, Tc might be shifted
by a few degrees. No crossover temperature, however, was
observed in the temperature dependence of the Brownian
velocity of the UCNPs in D2O (Figure 2a).
Interestingly, recent findings on the three-dimensional

confinement of light and heavy water within zwitterionic
liposomes of different sizes, as determined through SH imaging
and scattering experiments, have yielded a noteworthy
conclusion: The H-bond networks in D2O differ not only at
subnanometer length scales but also at length scales of ≲100
nm.76 This significantly exceeds the previously observed
confinement length scales of ∼2−20 nm.76 On the contrary,
experimental105 and simulation106,107 results have shown that
the dielectric constant of confined water is much lower than
that of bulk water. Similarly, Kim et al.108 highlighted how the
confinement of interfacial water molecules caused by surface
charge results in a lower dielectric constant at the hydration
layer, which can be controlled by changing the temperature at
the surface. Therefore, the Brownian velocity of UCNPs
dispersed in heavy water displays an uninterrupted linear
increase from room temperature to the boiling point, similar to
the behavior observed for water at temperatures below Tc
(Figure 2a), because of the much larger spatial extent over
which H2O molecules interact in the hydration water of the
UCNPs, corresponding to a much larger spatial extent for low-
to high-density liquid water fluctuations.
We observed a pronounced reduction in the Tc values of the

nanofluids as the diameter d of the UCNPs increased (Figure
2c). This intriguing size-dependent trend shows that, as d → 0,
Tc converges toward 331.2 ± 0.2 K, as nicely illustrated by the
surface/volume (S/V) ratio of the UCNPs [quasi-spherical
morphology (Figure S5)] in the inset of Figure 2c. This
temperature should therefore correspond to the onset
temperature of the fluctuations between high- and low-density
liquid states in pure water (d = 0 in Figure 2c). Interestingly,
this upper-temperature threshold for fluctuations in the HDL
domain-dominated region under ambient conditions agrees
with the value (325.0 ± 1.0 K) estimated based on data from

the hypothetical phase diagram of water under ambient
conditions published in refs 4 and 8 (Figure 3).

Furthermore, we hypothesize that the decrease in the Tc of
the aqueous nanofluids derived from Figure 2c compared to
pure water stems from a decrease in the high- to low-density
liquid water fluctuations as a consequence of the prevalence of
a higher concentration of HDL patches relative to LDL regions
in the volume of nanofluid moving cooperatively with UCNPs.
Notably, this hypothesis corroborates previous findings, both
in silico71 and in experiments,109 about the hydration water of
the lysozyme protein. This hydration water (defined as the
water molecules encompassing the protein within a 0.6 nm
shell)71 exhibits local distortions when compared to bulk
water. For instance, its density is much higher than that of the
bulk110 and the dielectric constant of interfacial water in the
double layer is much lower than that of bulk water.108 These
distortions induce a different ordering of water molecules at
the interface, characterized by a higher concentration of HDL
domains than LDL domains, compared to bulk water.71,109

Like the impact of the lysozyme protein in liquid water, the
presence of UCNPs also influences the local structure of water
within the aqueous nanofluids. Consequently, nanofluids with
larger UCNPs (lower S/V ratios) contain a relatively higher
proportion of HDL domains in the hydration shell of the
nanoparticles, leading to lower Tc values (Figure 2c). When d
> 78 nm, Tc reaches a plateau at ∼327.5 K. This occurs
because the S/V ratio changes negligibly beyond this size
threshold. Remarkably, the Tc of ligand-free and silica-coated
UCNPs of comparable size is similar (Figure 2c), suggesting an
analogous relative HDL/LDL proportion at the particle
surface, in agreement with an identical charge density of the

Figure 3. Hypothetical phase diagram of liquid water. (a) Coexistence
of HDL (red) and LDL (blue) domains near the Widom line (W).
Below W, LDL dominates with fluctuations in HDL domains, whereas
above W, HDL dominates with LDL fluctuations. The white star
represents the liquid−liquid critical point. With greater distance from
the critical point, fluctuations decrease in size, as indicated by the
blobs. The gray line outlines the “funnel of life”, where water exhibits
unusual properties crucial for maintaining life. Outside the funnel, at
higher temperatures, only local fluctuations occur in the HDL liquid
(indicated by small blue dots on the red background). Reproduced
with permission from ref 8. Copyright 2019 Springer Nature. (b)
Close-up of the shaded area in panel a showing the upper-temperature
limit of the “funnel of life” at ambient pressure, corresponding to
crossover temperature Tc (diamond), and illustrative schemes of the
temperature dependence of high- to low-density liquid fluctuations.
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water−silica and water NaYF4 interfaces [|ζ| ∼ 35 mV (Figures
S3 and S4)].
The vicinity of the UCNPs can be sensitively influenced by

local ions and ligands, with effects already occurring at
extremely low concentrations.111 Fine-tuning the pH of
suspensions at the water−silica interface was found to induce
changes in charge density, impacting the orientation of water
molecules.110,112 Recent surface-enhanced IR absorption
spectroscopy results have also shed light on the influence of
pH on hydrogen and water binding energies on platinum
surfaces.113 Also, a pH dependence of the onset temperature of
the anomaly related to the minimum isothermal compressi-
bility of liquid water was reported for aqueous suspensions,
including 1-methyl-5-nitroindoline,80 Eu3+ complexes,82,83 and
NaYF4:Yb/Er UCNPs.86 These findings suggest a potential
role of pH in influencing high- to low-density fluctuations
within aqueous nanofluids.
To explore this possibility, we evaluated the temperature-

dependent Brownian velocity of the UCNPs dispersed in
aqueous nanofluids while systematically varying the pH values
from 2.70 to 8.50 (Figure 4a for d values of 15, 64, and 78 nm

and Figure S12 for d values of 24, 52, and 106 nm). Except for
pH values between 7.0 and 8.0, the measured absolute ζ
potential values (|ζ| > 20 mV) indicate stability with no UCNP
aggregation (Figures S3 and S4).
pH exerts a notable influence on Brownian velocity, with an

increase in pH leading to a reduction in Brownian velocity
when T < Tc, while the pH dependence becomes negligible
when T > Tc. This impact is primarily on LDL domains,
present only when T < Tc. Increasing the pH weakens the H-
bond network due to an increased concentration of OH− ions,
disrupting the tetrahedral organization of LDL domains due to
their voluminous planar structure.114 Increasing the pH

triggers the fragmentation of LDL domains into smaller
ones,8 while keeping the HDL/LDL ratio, leading to a
deceleration of the motion of the UCNPs. This effect mirrors
the application of high pressures, as suggested by previous
neutron diffraction measurements114,115 and Monte Carlo
simulations.116 As the pressure increases at a constant
temperature, the LDL−HDL fluctuations become less
favorable.8 This can be visualized as the fragmentation of the
LDL domains (Figure 3 and Figure S1). However, recent
machine learning-based molecular dynamics simulations of
ions in salt water have shown that the ions do not
homogeneously distort the structure of water but instead
have localized structural effects in the first solvation shell.117

Our results agree with this scenario as increasing the pH of the
nanofluids is an ingenious strategy for simulating a pressure-
like effect and evaluating microscopic changes in H-bond
networks.
The decrease in Brownian velocity with an increase in pH

results in a concomitant decrease in Tc values (Figure 4b),
indicating that low- to high-density liquid fluctuations at
nanoparticle surfaces cease at lower temperatures in basic
media compared to acidic media. To explain this dependence,
we consider the influence of pH on the surface charge of
UCNPs, with experiments demonstrating how surface charge
controls the water structure near the interface. The fine-tuning
of pH affects the extent of orientation of water molecules near
the interface, as reported for water−silica interfaces.108,110

Therefore, to study the effect of pH on the electric double
layer of UCNPs, we measured the ζ potential of the distinct
aqueous nanofluids. Our results show a decrease in |ζ| as pH
increases (Figure S4), in good accordance with previous
reports on upconverting118 and plasmonic111 nanoparticles.
This mirrors the trend observed for Tc (Figure 4b and Figure
S13), highlighting how the presence of ions in the medium can
affect the surface charge of the UCNPs. The increase in the
extent of electrostatic repulsion of the UCNPs causes a higher
Tc value (Figure 4c). As higher Tc values correspond to larger
amounts of LDL patches, as discussed above, we propose that
a greater surface charge (or the electrical potential at the
slipping plane) increases the proportion of LDL patches in the
hydration water of the nanoparticles. This hypothesis agrees
with simulations conducted by Gallo’s group, indicating a
slower decrease in the rate of LDL domains at the biomolecule
interface with an increase in temperature.71 Moreover, for a
constant |ζ| value, nanofluids with smaller UCNPs exhibit a
higher Tc, consistent with the findings depicted in Figure 2c. It
is noteworthy that the same conclusion can be drawn
exclusively from upconversion thermometry and by combining
upconversion thermometry with ζ potential measurements.
Similar results were reported by Kim et al.,108 demonstrating
how temperature changes the interfacial structure of water by
mitigating the effect of surface charge at water−oil interfaces.
Interestingly, Barisik et al.119 showed that, at a constant pH,

the surface charge density of Si-NPs decreases with an increase
in particle size until it stabilizes after reaching a critical
diameter of 100 nm. A similar trend was observed for metal
oxide nanoparticles.120 These findings align with our Tc size
dependence results (Figure 2c), revealing a decrease in Tc with
an increase in particle size up to a critical value (>78 nm),
beyond which it remains constant.
In summary, our study systematically investigated the impact

of temperature and pH on Brownian velocity in a range of
UCNPs (15−106 nm diameter) dispersed in water. We

Figure 4. Correlation among the crossover temperature, pH, and ζ
potential. (a) Effect of pH on the Brownian velocity of UCNPs with
diameters within the operating range of the nanorulers, as defined in
Figure 2c. The dashed lines are the best linear fits at each pH for T <
Tc and the same linear fit for all of the pH values for T > Tc (r2 > 0.98
for all samples). Tc as a function of (b) pH and (c) |ζ|. The solid lines
are guides to the eyes.
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consistently observed a decrease in the onset temperature of
high- to low-density liquid water fluctuations with an increase
in nanoparticle size, indicative of an increased presence of
HDL domains at nanoparticle surfaces. UCNPs, therefore,
behave as nanorulers for assessing the HDL/LDL proportion
in surrounding hydration water. Moreover, the upper-temper-
ature threshold for these fluctuations, as predicted by our
experiments, agrees with values proposed in the hypothetical
phase diagram of water under ambient conditions based on the
two-state model. Additionally, we have shown that increasing
the pH decreases Tc and decreasing the Tc decreases the
relative amount of LDL patches, akin to external pressure on
pure water. By precisely controlling the UCNP size and pH
levels, we have simulated the effects of temperature and
pressure on HDL and LDL hydrogen bonding networks,
mirroring predictions in the hypothesized phase diagram.
Within nanofluids, the local environment around nanoparticles
exerts a significant influence on their physical−chemical
properties, being different from the bulk due to interaction
with the particle surface.111 This work elegantly underscores
the substantial impact of these interactions, serving as
compelling evidence of this effect for a specific example of
luminescent nanoparticles.
These findings resonate with the intricate interplay between

water and various nonpolar media, metals, oxides, and
biomembranes, emphasizing the importance of the water
charge-asymmetrical molecular configuration at interfa-
ces.75,108,110 In conclusion, our results provide compelling
experimental evidence regarding the significance of the size of
suspended nanoparticles or biomolecules in understanding the
dynamics of high- to low-density liquid fluctuations and water
behavior at charged interfaces.

■ METHODS
Synthesis of Upconverting Nanoparticles. NaGdF4:Yb/Er(18/
2%)@NaGdF4 (average diameter of 15 nm, core−shell),
NaYF4:Yb/Er(18/2%)@NaYF4 (average diameter of 24 nm,
core−shell), NaYF4:Lu/Yb/Er(40/18/2%) (average diameter
of 52 nm, core-only), NaYF4:Lu/Yb/Er(47/18/2%) (average
diameter of 64 nm, core-only), NaYF4:Lu/Yb/Er(47/18/2%)
(average diameter of 78 nm, core-only), NaYF4:Lu/Yb/Er(47/
18/2%)@SiO2 (average diameter of 100 nm, core−shell), and
NaYF4:Lu/Yb/Er(50/18/2%) (average diameter of 106 nm,
core-only) ligand-free UCNPs were synthesized through a
coprecipitation method based on a previous report.121 The
detailed synthesis procedure and the characterization of the
UCNPs are described in section 2 of the Supporting
Information.
Preparation of the Nanof luids. Aqueous nanofluids containing

ligand-free UCNPs were obtained by adjusting the pH of water
between 2.70 and 5.10 by adding aqueous solutions of sodium
hydroxide and hydrochloric acid (0.1 mol L−1) at a volume
fraction (ϕ) of 0.085%. The aqueous nanofluids of 15 nm
UCNPs were freeze-dried, and the resulting powder was
dispersed in heavy water and ethanol under sonication to
obtain the corresponding nanofluids at ϕ = 0.085%. A detailed
description of pH measurements and the preparation of
nanofluids is presented in section 2 of the Supporting
Information.
Upconversion Spectroscopy. The upconverting emission

spectra of the nanofluids were recorded using the experimental
setup shown in Figure S7. A quartz cuvette (9F-Q-10, Starna
Cells) filled with 0.50 mL of the nanofluids was irradiated with

a near-infrared 980 nm laser diode (DL980-3W0-T,
CrystaLaser) operating with a power density (PD) of 62 W
cm−2. The excitation radiation was collimated with a plano-
convex lens (LA1145-AB, Thorlabs). The upconversion
emission spectra were registered with a USB portable
spectrometer (Maya 2000 Pro, Ocean Insight) coupled to an
optical fiber (P600-1-UV-vis, Ocean Insight). A short pass
filter (FESH0750, Thorlabs) was used to cut off the 980 nm
laser signal from the emission spectra. The temperature of the
nanofluids was increased through the Joule effect by attaching
a Kapton thermofoil heater (HK6906, Minco) in thermal
contact with one side of the cuvette containing the nanofluids.
This setup allows us to control both the initial temperature and
the temperature increase. Further information is provided in
section 2 of the Supporting Information.
Measurement of Temperature through Upconversion Nano-

thermometry. The luminescence intensity ratio between the
emission bands corresponding to the Er3+ 2H11/2 → 4I15/2 (IH,
510−534 nm) and 4S3/2 → 4I15/2 (IS, 534−554 nm) transitions
was used to define a thermometric parameter (Δ = IH/IS) and
predict absolute temperature T of the nanofluids as detailed in
section 3 of the Supporting Information.
Determination of the Brownian Velocity of the UCNPs in the

Nanof luids. The emission spectra were recorded at different
distances xi from the Kapton thermofoil heater to construct
time-dependent temperature profiles through upconversion
nanothermometry. An excellent linear correlation between xi
and the onset time (the time at which the temperature
increases above its uncertainty) was systematically obtained.
The slope of the linear fit to each data set represents the
Brownian velocity of the UCNPs in the nanofluids. Further
details are provided in sections 4−6 of the Supporting
Information.
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